
PRACTICAL CRYPTANALYSIS OF
REAL-WORLD SYSTEMS

An Engineer’s Approach

DISSERTATION

zur Erlangung des Grades eines Doktor-Ingenieurs

der Fakultät für Elektrotechnik und Informationstechnik

an der Ruhr-Universität Bochum

Benedikt Driessen
Bochum, July 2013

Practical Cryptanalysis of Real-World Systems
Thesis Advisor Prof. Christof Paar, Ruhr-Universität Bochum, Germany

External Referee Prof. Ross Anderson, University of Cambridge, England
Date of submission May 22, 2013

Date of defense July 9, 2013
Date of last revision July 16, 2013

To Ursula and Walter,
my parents.

iii

Abstract

This thesis is dedicated to the analysis of symmetric cryptographic algorithms. More specifically, this doc-
ument focuses on proprietary constructions found in four globally distributed systems. All of these con-
structions were uncovered by means of reverse engineering, three of them while working on this thesis, but
only one by the author of this document. The recovered designs were subsequently analyzed and attacked.
Targeted systems range from the GSM standard for mobile communication to the two major standards for
satellite communication (GMR-1 and GMR-2) and finally a widely deployed digital locking system. Surpris-
ingly, although much progress has been made in the area of specialized cryptography, our attacks on the
newly reverse engineered systems show that even younger designs still suffer from severe design flaws.

The GSM stream ciphers A5/1 and A5/2 were reverse engineered and cryptanalyzed more than a decade
ago. While the published attacks can nowadays be implemented and executed in practice, they also inspired
our research into alternative, more efficient hardware architectures. In this work, we first propose a design
to solve linear equation systems with binary coefficients in an unconventional, but supposedly fast way.
Solving many of these equations is a fundamental step in most of the attacks developed for A5/2 and A5/1.
Based on the proposed device, which solves equation systems over the rationals, we present a method to
convert these solutions to solutions over the binaries.

Secondly, we describe the stream cipher A5-GMR-1, used in the GMR-1 satellite telecommunication stan-
dard, which was uncovered by reverse engineering. Then, the security of this cipher is analyzed and a
highly practical ciphertext-only attack is developed. In a final step, the proposed attack is implemented and
executed on the Thuraya satellite network. Together with the description of the equipment necessary for
this operation, it is shown that voice privacy in GMR-1 cannot be trusted.

Extending the analysis of satellite phone communication standards to GMR-2 was only natural. The
process of reverse engineering the stream cipher A5-GMR-2 is described, together with the design principles
of a recursive disassembler for Blackfin DSPs. Then, the recovered cipher is described and a very efficient
known-plaintext attack, which can be adjusted by means of a keystream/time trade-off, is presented.

Finally, an authentication scheme for digital locks is analyzed and broken with two distinct attacks. The
SimonsVoss 3060 system is widely deployed and uses two proprietary constructions (key derivation and
response computation) to authenticate transponders against digital locks. The designs include modifications
to the well-known block cipher DES, but also a module that resembles a T-function. Combining a total of
four weaknesses in key derivation and response computation with differential cryptanalysis and a recursive
attack procedure on T-functions allows to open locks in practice.

In terms of insights offered due to the interdisciplinary nature of this thesis, the first part shows a creative
effort to improve existing attacks. The second perspective highlights how practical cryptanalysis can be
turned into a real-world attack on a global system. The chapter on GMR-2 is a detailed account of reverse
engineering algorithms from complex embedded systems, while the final perspective documents the evolu-
tion of a practical cryptographic attack over a period of time—in parallel to the reverse engineering process
itself.

iv

Kurzfassung

Diese Arbeit ist der Analyse von symmetrischen, kryptographischen Algorithmen gewidmet. Das Dokument
konzentriert sich im speziellen auf proprietäre, nicht öffentlich dokumentierte Verfahren die in vier global
eingesetzten Systemen verwendet werden. Alle untersuchten Verfahren wurden durch den Prozess des
Reverse-Engineering rekonstruiert, drei davon im Verlauf dieser Arbeit (aber nur eines durch dessen Au-
tor). Die gefundenen Konstruktionen wurden analysiert und konsequent attackiert. Bei den angegriffenen
Systemen handelt es sich um den globalen Telefoniestandard GSM, sowie die zwei Standards für Satelli-
tentelefonie GMR-1 und GMR-2. Als viertes System wurde ein digitales Schließsystem angegriffen. Unsere
Untersuchungen zeigen, dass auch neuere Entwicklungen weiterhin unter schweren Designfehlern leiden.
Dies ist überraschend, zumal es zunehmend mehr öffentlichen Publikationen gibt, welche die üblichen An-
forderungen und Probleme von real eingesetzten Systemen adressieren.

Die Stromchiffren A5/1 und A5/2, die im GSM Standard eingesetzt werden, wurden bereits vor einem
Jahrzehnt rekonstruiert und gebrochen. Obgleich die kryptanalytischen Attacken bereits so weit fortgeschrit-
ten sind, dass sie praktikabel eingesetzt werden können, hat uns dies dazu motiviert, deren Effizienz weiter
zu steigern. In dieser Arbeit wird ein Entwurf für eine Hardware basierend auf OP-Verstärkern vorgestellt,
die binäre, lineare Gleichungssysteme über den rationalen Zahlen lösen kann. Das schnelle Lösen solcher
Systeme ist der Kern vieler Angriffe auf Stromchiffren, auch im Fall von GSM. Um aber die erhaltenen Lö-
sungen für einen echten Angriff nutzbar zu machen, musste eine Methode gefunden werden um rationalen
Lösungen in den Raum der binären Zahlen zu transformieren. Eine solche Methode wird beschrieben, sie
ist aber auch unabhängig von der vorgeschlagenen Rechnerarchitektur interessant.

Im Anschluss wird die Stromchiffre A5-GMR-1 vorgestellt, die aus einem Satellitentelefon für den GMR-1
Standard extrahiert wurde. Die Chiffre wird analysiert und mittels einer Attacke gebrochen, die lediglich
verschlüsselte Daten benötigt. Damit ist die Attacke extrem praktikabel, was praktisch demonstriert wird.
Dies, sowie detaillierte Angaben zur Konfiguration eines GMR-1 Netzwerks, zeigt, dass auf die Sprachver-
schlüsselung in GMR-1 nicht vertraut werden sollte.

Im Weiteren wird die Analyse auf den zweiten Satellitentelefonie-Standard ausgedehnt. Es wird der
Prozess beschrieben, der die Rekonstruktion von A5-GMR-2, der Chiffre im GMR-2 Standard, aus der
Firmware eines Telefons ermöglicht hat. Diese Beschreibung enthält die Designprinzipien für einen rekur-
siven Disassembler und Techniken, um die Chiffre (die nur einen Bruchteil der 300 000 disassemblierten
Codezeilen ausmacht) zu finden. Das Ergebnis der anschließenden Analyse wird dokumentiert und eine
sehr effiziente Attacke präsentiert, die sich anhand des verfügbaren Schlüsselstroms parametrisieren lässt.

Als letztes System wird in dieser Arbeit das digitale Schließsystem SimonsVoss 3060 betrachtet und das
eingesetzte Authentifikationsverfahren beschrieben. Das Verfahren setzt zwei proprietäre Konstruktionen
(für Schlüsselableitung und Antwortberechnung) ein, die auf einem modifizierten DES und einer T-Funktion-
ähnlichen Methode basieren. Die Kombination von vier verschiedenen Schwächen in dem Design mit Tech-
niken der differentiellen Kryptanalyse und einer rekursiven Angriffsprozedur auf die T-Funktion ermöglicht
zwei verschiedene Attacken. Beide Attacken sind praktikabel und erlauben das unautorisierte Öffnen von
Türschlössern.

Durch die interdisziplinäre Natur dieser Arbeit eröffnet jedes Kapitel eine eigene Perspektive auf Angriffe
auf real eingesetzte Systeme: Im ersten Kapitel wird der kreative Ansatz existierende Attacken zu beschle-
unigen beschrieben. Das zweite Kapitel zeigt, wie Kryptanalyse im Rahmen von einem globalen System
eingesetzt und praktisch angewandt werden kann. Das dritte Kapitel zeigt den Aufwand, der hinter Reverse-
Engineering Vorhaben im Umfeld von hoch-komplexen, eingebetteten Systemen steckt. Das vierte Kapitel
zeigt schließlich, wie sich kryptanalytische Methoden im Verlauf einer Analyse (d.h. mit wachsendem Wis-
sen über ein System) verbessern können.

v

Acknowledgement

You know who “you” are.

vi

CONTENTS

1 Introduction 3

1.1 Motivation . 3
1.2 Contribution and Organization . 5
1.3 Notation . 5

2 Solving Linear Equations with Analog Hardware 7

2.1 Motivation . 7
2.2 Related Work . 8
2.3 A Circuit to Solve Linear Equations . 8
2.4 Transforming Matrices . 10
2.5 Converting Rational Solutions . 12
2.6 Discussion and Limitations of the Approach . 15

2.6.1 Matrices with Cycles . 15
2.6.2 Output Precision . 16

3 Security Analysis of the GMR-1 Standard 19

3.1 Motivation . 19
3.2 Related Work . 20
3.3 Technical Background . 20

3.3.1 Network Layout . 21
3.3.2 Channels . 22
3.3.3 Encoding and Encryption . 23

3.4 Reverse Engineering . 25
3.5 The A5-GMR-1 Stream Cipher . 25

3.5.1 Structure . 25
3.5.2 Mode of Operation . 26

3.6 Cryptanalysis . 27
3.7 A Real-World Attack . 30

3.7.1 Recording TCH3 Data . 30
3.7.2 Parity-check Matrix . 31
3.7.3 Parameterization . 32

i

Contents

3.7.4 Implementation . 34
3.7.5 Results . 35

3.8 Discussion and Future Work . 36
3.8.1 Uplink Interception . 36
3.8.2 Real-time Decryption . 37

4 Security Analysis of the GMR-2 Standard 39

4.1 Motivation . 39
4.2 Related Work . 39
4.3 Technical Background . 39

4.3.1 Satphone Hardware . 39
4.3.2 The Blackfin DSP . 40
4.3.3 Software and Operating System . 42

4.4 Reverse Engineering . 43
4.4.1 Obtaining the DSP Firmware . 43
4.4.2 Developing a Blackfin Disassembler . 44
4.4.3 Finding the Cipher . 47

4.5 The A5-GMR-2 Stream Cipher . 49
4.5.1 Structure . 49
4.5.2 Mode of Operation . 51

4.6 Cryptanalysis . 52
4.7 Discussion and Future Work . 54

5 Security Analysis of the SimonsVoss 3060 Locking System 55

5.1 Motivation . 55
5.2 Related Work . 56
5.3 Technical Background . 56
5.4 Reverse Engineering . 57
5.5 The G2 Authentication System . 57

5.5.1 Keys & Protocol . 57
5.5.2 Cryptographic Primitives . 59

5.6 Cryptanalysis . 61
5.6.1 Differential Attack . 62
5.6.2 Active Attack . 68
5.6.3 Passive Attack . 69

5.7 Discussion and Future Work . 70
5.7.1 Comparison of Attacks . 71
5.7.2 Mitigations . 71

6 Conclusion 73

ii

Acronyms

AES Advanced Encryption Standard

OPAMP Operational Amplifier

LES Linear Equation System

NFS Number Field Sieve

ASOL Analog Solver

QUCS Quite Universal Circuit Simulator

PSPICE Personal Simulation Program with Integrated Circuit Emphasis

TI Texas Instruments

GSO Geosynchronous Orbit

TDMA Time Division Multiple Access

TCH Traffic Channels

CCH Control Channels

FCCH Frequency Correction Channel

FACCH3 Fast Associated Control Channel-3

CCCH Common Control Channel

TCH3 Traffic Channel-3

ARFCN Absolute Radio-Frequency Channel Number

TN Timeslot Number

LFSR Linear Feedback Shift Register

GMR-1 Geo-Mobile Radio 1

GMR-2 Geo-Mobile Radio 2

CRC Cyclic Redundancy Check

SDR Software Defined Radio

LZ Lempel-Ziv

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

CPU Central Processing Unit

1

GSM Global System for Mobile Communications

UMTS Universal Mobile Telecommunications System

WLAN Wireless Local Area Network

PSTN Public Switched Telephone Network

DSP Digital Signal Processor

RTOS Real Time Operating System

LSB Least Significant Bit

MSB Most Significant Bit

DAU Data Arithmetic Unit

ALU Arithmetic Logic Unit

IDA Interactive Disassembler

DFU Device Firmware Upgrade

ELF Executable and Linking Format

API Application Programming Interface

DES Data Encryption Standard

RNG Random Number Generator

RKE Remote Keyless Entry

DST Digital Signature Transponder

ETSI European Telecommunications Standards Institute

GPS Global Positioning System

DECT Digital Enhanced Cordless Telecommunications

CoCOM Coordinating Committee on Multilateral Export Control

IC Integrated Circuit

2

CHAPTER 1

INTRODUCTION

In this chapter we introduce the overall motivation for this work, trace its chronology and describe the
contributions. Furthermore, we outline the principal organization of the core chapters and introduce the
notation common to all of them.

1.1 Motivation

The field of IT Security (and by inclusion the discipline of cryptology) has a unique characteristic that sets
it apart from traditional engineering disciplines: there is no rigorous methodology for building practical,
secure systems and its community clearly has a personality disorder1. While one group is always striving
to improve overall security, the remainder is constantly trying to sabotage their efforts. Even worse, latter
group is competing at who beats the constructive guys most efficiently! And there is another twist: the
destructive guys are motivated by the assumption that there exists an equally skillful but more malicious and
less vocal group, which not only breaks systems to break them, but actually tries to accomplish something by
doing it. This entity, often2 called “Oscar”, “Eve” or “Mallory” in the literature, could be a rogue government,
an agency or even the Mafia. So, in order to prevent these others from reaching their ends, the good guys
have to preemptively uncover and publish all means that might be used for attacking a security system.
What sounds paradoxical is a widely accepted paradigm: since the lack of proper methodology implies a
necessity for this cycle of creation, variation and destruction, all members of the community are happily
motivating each others’ work.

What could be perceived as criticism is actually a description of the process which gave rise to this work.
We were initially motivated by an ambitious goal: establishing a new speed record for cracking the over-the-
air encryption of the Global System for Mobile Communications (GSM) standard, for which a plethora of
attacks and implementations already existed. However, this would have only been a byproduct of an even
more ambitious goal which was to accomplish this feat with innovative circuits based on analog hardware.
While initial results were encouraging, scaling the attack hardware to the necessary size proved to be not
feasible. At the same time, however, public interest in analyzing alternatives to GSM began to grow. This

1The scientifically correct term for the described phenomenon is actually Dissociative Identity Disorder, which denotes the mental
state of a person having multiple, distinct and long-lasting identities.

2The name of an attacker often hints at his/her assumed capabilities, e.g., “Eve” is a passive attacker while “Mallory” is more
malicious and can perform man-in-the-middle attacks.

3

Chapter 1 Introduction

was (partially) due to efforts of the open source community to implement the protocol stacks of global
communication standards such as Digital Enhanced Cordless Telecommunications (DECT), GSM and Geo-
Mobile Radio 1 (GMR-1). It became apparent that, while the security of GSM had been studied in depth
for quite some time, this had yet to happen for satellite telecommunications standards, of which GMR-1
was a more prominent one. The lack of public documentation of the security mechanisms in GMR-1 and
Geo-Mobile Radio 2 (GMR-2) was a hindrance to immediate analysis—which explains why there were no
prior results published—and had to be overcome by reverse engineering. The successful completion of these
two projects led to the participation in a third project of this kind: the analysis of the SimonsVoss locking
system, which came into focus due to daily use. Besides being installed in thousands of buildings all over
the world, the system is also present at Ruhr-University Bochum and was guarding the author’s office.

In addition to the purely academic pursuit of knowledge, which is summed up in the metaphor of the
creative cycle, the practical nature of our work added another dimension of motivation. Obviously, when
arguing about algorithms, ciphers and mechanisms, this is typically done in a very abstract manner; some
even insinuate that cryptologic research borders on the practically irrelevant. This changes, however, when
security systems are actually implemented and the respective users have to rely on security guarantees
they are told to expect. While, in the case of a digital locking system, a breach of cryptographic measures
may lead to theft and loss of property, in the case of telecommunication systems, weak security (or more
specifically: confidentiality) can have even more serious consequences. What may sound exaggerated can
be substantiated by the following development that was caused by our work:

Shortly after blogs, magazines and newspapers picked up on our analysis of GMR-1, the au-
thor was contacted by journalists, working in Syria, Afghanistan and Iraq, who where concerned
for their safety. Their use of satellite systems for communication was motivated by the idea that
local GSM networks could be monitored, while the satellite of the Thuraya network was out of
reach for the respective regimes.

However, after our eavesdropping demonstration it dawned on them that the assumed confi-
dentiality only existed on paper—which made them look for better alternatives, motivated by a
fear for their own wellbeing.

Clearly, Thuraya (one of the providers of GMR-1 satellite telephony) could have done a better job at en-
crypting voice data, but due to a lack of exposure, the problem of weak encryption never surfaced. Even
worse, any interested party with sufficient motivation could have done what we did, while exploiting the
results differently. So our work brought the existence of a problem, which might have been known for
more than a decade, to public awareness. This example vividly illustrates the thought pattern and seeming
paradox we described at the beginning of this section. In contrast to the case of GMR-1, where the problem
of weak encryption should have been known (at least after the attacks on A5/2) the case is a bit different
for SimonsVoss. We give them the benefit of the doubt: we assume that not only for their users, but also for
the manufacturer themselves, our results are rather surprising. However, if considered as a learning process,
this will allow SimonsVoss to improve their security in order to thwart any “really bad guys”.

Subsuming the motivation—and adding the fact that studying, understanding and breaking systems is
actually interesting—we hope that, by providing objective analysis, we can heighten awareness of users and
manufacturers alike, which will ultimately lead to better and more secure systems.

4

1.2 Contribution and Organization

1.2 Contribution and Organization

Besides this introduction and a final conclusion, this document consists of four chapters, which correspond
to four independent projects. The chapters are organized such that they are self-contained with the aim of
limiting the number of external resources required to understand what is presented. Each chapter is intro-
duced by describing the respective motivation for undertaking the project, followed by examining previous
work. Then, some necessary technical background is given. Finally, the core results and their implications
are presented. Each chapter concludes with a discussion of the results and an outlook on future work.

In the following, we list the four chapters together with the respective contributions. Even though the
projects in Chapters 3-5 were group efforts, this thesis only describes the original contributions of its author.
This is possible because all projects can be broken down into disjunctive sub-projects, which build on each
other, i.e., cryptanalysis can be understood without a detailed description of the reverse engineering process.
• Chapter 2: An analog solver.

We propose an architecture based on Operational Amplifiers (OPAMPs) to solve binary linear equations
in a fast way. Furthermore, we extend the basic design to overcome certain limitations. Finally, we
present a method to convert any rational solution to an equation system over the binary numbers into
the respective binary solution.

• Chapter 3: Practical cryptanalysis of A5-GMR-1.

We describe the reverse engineered cipher from the GMR-1 satellite phone standard. We perform
cryptanalysis of the cipher, and develop a novel ciphertext-only attack. Then we describe the layout of
a typical GMR-1 network and describe hardware and software required to receive and record satellite-
to-satphone communication. We report our attack results and, supplemented with measurements of
satphone output power, show that privacy in GMR-1 is non-existent.

• Chapter 4: Reverse engineering and cryptanalysis of A5-GMR-2.

We document the process of reverse engineering the A5-GMR-2 cipher from the firmware of a satphone.
We describe the design of a disassembler and the techniques used to discover the cipher in a 300 000
line disassembly. We then present and analyze the design of the cipher and describe a very efficient
and practical known-plaintext attack with a keystream/time trade-off.

• Chapter 5: Practical cryptanalysis of a digital locking system.

Here, we describe the design of the authentication system used by the SimonsVoss 3060 locking system.
We analyze the design and, based on the discovered flaws, present two distinct attacks—both being
highly practical. Finally, we argue that the second attack is optimal with regard to the exploitation of
observable transmissions.

1.3 Notation

Here, we shortly describe the common notation used throughout this work.

Symbol Description

N+ The set of natural numbers without 0, i.e., N \ {0}
Z+ The set of integers without 0, i.e., Z \ {0}
|V| Denotes the number of elements in the set V

cl−1cl−2...c0.d0d1d2...dm−1 Denotes the binary expansion of a rational number with ci , d j ∈ {0,1}.
A A matrix
|A| The determinant of A

5

Chapter 1 Introduction

In The n× n identity matrix
1n An n× n matrix with all coefficients being 1
~b A vector
~0n A vector of n elements, all being 0

(x0, x1, ..., xn−1)2 Description of x as string of n bits
(X0, X1, ..., Xn−1)2m Description of X as string of n elements with m bits each, for m > 1

x〈a〉 Denotes a single bit of the bitstring x at index a

x〈a..b〉 Denotes a substring of the bitstring x , ranging from index a to b

x ||y The concatenation of two bitstrings x and y

0n A string of n zero bits
α,β ,γ, ... Variables with Greek letters typically denote a hypothesis/guessed value
ψ(),ξ() Mappings with Greek letters are typically introduced to simplify descriptions

F (),G (), ... These mappings typically denote entire function blocks (e.g., a DES)
X =F (K; Y) This typically denotes encryption of Y to X under key K

x≫ a Shift the bitstring x by a bits to the right

Table 1.1: Notation

6

CHAPTER 2

SOLVING LINEAR EQUATIONS WITH ANALOG HARDWARE

This chapter presents our results on building a dedicated hardware device based on Operational Amplifiers
(OPAMPs), which is capable of solving certain equation systems over F2. Additionally, we introduce a
method to convert a rational solution for a binary equation system into a solution over F2.

2.1 Motivation

Solving binary Linear Equation System (LES) of the form

A~x = ~b with A ∈ Fn×n
2 and ~b, ~x ∈ Fn

2

in n unknowns is a common problem and appears in numerous research and technical disciplines. In the
field of cryptography, a special form of this problem arises when attacking stream ciphers. Certain attacks,
such as attacks on A5/1 and A5/2 [Gol97, PFS00] (which are used for voice encryption in GSM), require
solving of a very large number (approx. 240) of LES over F2. These LES can be solved with the help of
Gaussian elimination (and more sophisticated variants), which can easily be implemented in software and
hardware. However, solving an equation system typically has cubic complexity, which is unsatisfying in
practice when the size of the set of LES is considerable.

To (potentially dramatically) speed up the process of solving these important equation systems, we have
experimented with an analog hardware architecture that can solve certain instances of the mentioned prob-
lems in a very fast manner with very limited resources. While it is unclear, what the actual time complexity
of this architecture is, a single step towards the solution promises to be orders of magnitude faster than any
conventional implementation.

A second contribution of this chapter is motivated by intermediate results. Based on the assumption that
we are given a rational solution to A~u = ~b with ~u ∈ Q (either as a result of applying our device, or by other
means), we have developed a method to convert this solution into a binary representation, which allows us
to solve the LES over F2.

7

Chapter 2 Solving Linear Equations with Analog Hardware

2.2 Related Work

Our work was inspired by previous attempts at using exotic hardware architectures which exploit certain
physical properties to solve computationally intense problems. Most notably, concepts such as TWIRL and
TWINKLE have been proposed a decade ago [Sha99, LS00, ST03]. They can be used for the sieving step
of the Number Field Sieve (NFS) [LLMP93] and are—in combination with “classical hardware”—assumed
to be able to factor 512-bit RSA moduli. Although these devices have never been built (at least not to the
author’s knowledge), it is supposedly possible to do so for $10 000 000.

The idea of the hypothetical devices is to shift the most expensive part of the NFS method from digital
hardware into the analog domain. More specifically, finding appropriate smooth numbers for the sieving
step is done with the help of an array of LEDs and a light sensor. In TWINKLE, the LEDs, which are switched
on and off in a specific manner, are emitting light proportional to the logarithms of successive but small
prime numbers. The sensor operates as instantaneous adder of these intensities and signals when a certain
threshold has been reached. The LEDs switched on in a particular moment, together with the product of
their associated primes, indicate a smooth number.

2.3 A Circuit to Solve Linear Equations

The advantage of TWINKLE/TWIRL is that they exploit a physical property to offload computation, which
inspired us to experiment with an electrical device we call Analog Solver (ASOL). The core idea of our
device is to use a network of switched OPAMPs to solve binary linear equation systems. The basic principle
of our circuit is given by the observation that OPAMPs can be used as inverting adders for input voltages ui ,
i.e.,

uout = −Radd

�
u1

R1
+

u2

R2
+

u3

R3
+ · · ·+

un

Rn

�

. (2.1)

See Figure 2.1 for the corresponding circuit. By choosing all resistors to be equal and inverting the polarity

Figure 2.1: Inverting adder with single OPAMP

of the input voltages, we can simplify Equation 2.1 to the following form,

−uout = u1 + u2 + u3 + · · ·+ un

which is a simple addition of the input voltages. Based on this idea, we can construct a circuit of n OPAMPs
with a switched feedback network, which computes a solution to the equation system

A~u= −~bUin, (2.2)

where Uin is the input voltage of the circuit.

8

2.3 A Circuit to Solve Linear Equations

Figure 2.2: Principle of constructing basic ASOL for three unknowns

In this network, feedback loops between the OPAMPs are closed according to the coefficients of an equa-
tion system which is to be solved—the solution to the equation system can be measured (after some oscilla-
tion) as voltage output of the OPAMPs. An example circuit for n = 3 is shown in Figure 2.2. The setting of
the switches is determined by the corresponding binary coefficients of A and ~b (an open switch represents
the binary value 0, and a closed one the value 1). Looking at each of the OPAMPs separately, we can write
down equations for the expected output voltage of each OPAMP:

u1 = −b1Uin− a1,2u2 − a1,3u3

u2 = −a2,1u1 − b2Uin− a2,3u3

u3 = −a3,1u1 − a3,2u2 − b3Uin

By re-arranging each equation accordingly, we easily see that the circuit represents an LES of quadratic form,
i.e.,

u1 + a1,2u2 + a1,3u3 = −b1Uin

a2,1u1 + u2 + a2,3u3 = −b2Uin

a3,1u1 + a3,2u2 + u3 = −b3Uin

where the matrix A has a non-zero diagonal (cf. Section 2.4). The example circuit solves a particular1 equa-

1The configuration of the switches indicates that the LES solved by ASOL shown in the figure is I3~u = (1, 1, 1)T , where I3 is the
3× 3 identity matrix.

9

Chapter 2 Solving Linear Equations with Analog Hardware

tion system with three unknowns and binary coefficients which is exactly what we stated in Equation 2.2.
When the circuit has converged to a stable operating point after all relevant switches have been set, the
output voltages of the OPAMPs will approximate the solution of the LES, i.e.,

~u= −Uin

�

A−1~b
�

.

Without delving further into the specifics of this device, and postponing a discussion of its limits until
Section 2.6, we will assume for the remainder of this chapter that the device will eventually be able to solve
equations over the rationals. Consequently, we developed a way to convert a rational solution to a solution
over F2, which will be presented after making a short detour into a discussion about solving matrices where
the diagonal elements are not 1.

2.4 Transforming Matrices

Using the device, as discussed in the previous section, imposes a certain constraint on the form of the matrix
A. In order to trivially assign the rows of the matrix to the OPAMPs of ASOL, the matrix must be in a form
where each diagonal element is 1. This form can always be found for quadratic matrices with full rank.
However, since our aim is to ultimately avoid any variant of Gaussian elimination, we decided to look into
computationally trivial alternatives.

The idea of our approach is to embed an n× n matrix A which has full rank, but is not of the desired
form, into a matrix B of size 2n× 2n. This matrix is derived from A in a way such that the desired form is
guaranteed. Constructing B is straightforward and presented in the following lemma.

Lemma 1. Let 1n be the n× n matrix where all coefficients are 1, ~0n is a vector of n zeros and In the n× n

identity matrix. If the LES A~x = ~b, A ∈ Fn×n
2 , ~x ,~b ∈ Fn

2 is uniquely solvable over F2, constructing an equation

system B~y = ~c with

B=

�

1n A⊕ 1n

In In

�

and ~c =

�
~b
~0n

�

(2.3)

yields a uniquely solvable system, which adheres to the restraint of having a non-zero diagonal. More impor-

tantly, the solution ~y to this equation system contains the solution ~x to the original problem in a trivial manner,

i.e.,

~x =

y0

y1
...

yn−1

Proof. In the following, all coefficient additions (and subtractions) are performed in F2. By construction,
the diagonal of B consists only of 1s. It is easy to see that the equation system can be brought into the
following form

�

0n A

In In

�

~y =

�
~b
~0n

�

by adding the lower n rows to the upper n rows in an appropriate manner. Using the same lower rows, the
next step gives this form

�

A 0n

In In

�

~y =

�
~b
~0n

�

,

10

2.4 Transforming Matrices

since addition and subtraction over F2 are similar. In this form it is obvious that the top n equations represent
the original equation system, which can be solved completely independent of the artificially introduced, new
variables yn, ..., y2n−1. Thus, the top n elements of ~y will be the solution to A~x = ~b.

Based on the previously shown technique of embedding the matrix A, we can extend the original ASOL
design so that it is possible to apply matrix configurations, which do not have a non-zero diagonal. Figure 2.3

Figure 2.3: Principle of constructing augmented ASOL for three unknowns

shows the extended design (for three unknowns), which, naturally, now relies on six OPAMPs. The basic
operating principle is the same; the difference is, however, that the diagonal elements a11, a22, a33 can also
be set. Please note that all matrix coefficients need to be inverted (to reflect the addition of A and I3).

It should be noted that due to the way A is embedded into B, any matrix B has an undesired property:
due to the 1n matrix in the upper left of B, the first n OPAMPs are heavily interconnected, forming cycles
which lead to undesirable behavior of the circuit. Please refer to Section 2.6 for a more detailed discussion.

11

Chapter 2 Solving Linear Equations with Analog Hardware

2.5 Converting Rational Solutions

In this section we present a method to “interpret” a rational solution ~u = A−1~b with A ∈ Fn×n
2 ,~b ∈ Fn

2 and
~u ∈ Qn in order to find a binary solution for the same equation system. The rational solution ~u can be
obtained either as voltages measured in our hypothetical device or by other means. The only thing that
matters is that the solution is “sufficiently” precise, a requirement that will become clear in Section 2.6.
Furthermore, we assume that the LES is uniquely solvable over F2, therefore the determinant of A must be
|A|= 1 over F2, and thus |A| ≡ 1 mod 2 when computing the determinant over the rationals. The latter fact
is important and will be used extensively in the remainder of this section.

Now we will describe how we can convert the rational solution to a binary vector ~x ∈ Fn
2 which satisfies

A~x = ~b over F2. We will do this with the help of three lemmata which will lead to the conversion method.

Lemma 2. If the LES A~u= ~b, A ∈ Fn×n
2 ,~b ∈ Fn

2 is uniquely solvable over F2 andQ, then computing the solution

over Q yields a vector ~u ∈Qn
Ï with

QÏ =

�
p

q
: p,q ∈ Z,q ≡ 1 mod 2

�

.

Proof. According to Cramer’s Rule, we know that a rational solution ~u = A−1~b can be computed by the use
of determinants, i.e.,

~u =

u0

u1
...

un

=
1

|A|

|A1|

|A2|
...
|An|

where |A| ∈ Z+ denotes the determinant of the binary matrix A and |Ai| ∈ Z denotes the determinant of
A where the i-th column has been replaced by ~b. Given the condition of unique solvability of the equation
system over F2, computing |A| over F2 cannot be zero. This must also hold when computing |A| over Z and
applying the modulo operator only as last step—since both procedures must yield the same result.

Therefore |A| ≡ 1 mod 2 holds and thus all potential rational solutions ~u must be in the set Qn
Ï.

Considering Lemma 2 and with the help of the ring homomorphism ϕ, which is defined as

ϕ : QÏ 7→ F2 with ϕ

�
p

q

�

=
p mod 2

q mod 2
= p mod 2

we could directly deduce a solution ~x ∈ Fn
2 for a particular solution ~u ∈ Qn

Ï
by simply applying the ϕ

operator to the vector of quotients component-wise, i.e.,

~x = ϕ (~u) =

ϕ(|A1|)

ϕ(|A2|)
...

ϕ(|An|)

≡

|A1|mod 2
|A2|mod 2

...
|An|mod 2

.

However, when measuring the voltage output of ASOL, we do only have fixed-point number representations
of the solution vector ~u and no information about its quotients. Therefore no direct modulo reduction is
possible and we have to find another way to compute ϕ (~u).

12

2.5 Converting Rational Solutions

Let us now consider how to convert ui ∈ QÏ, which is the i-th element of ~u given as rational number in
base-2, to a representation x i ∈ F2. For some l ∈ N+ let ui be given in the following form

ui = c.d0d1d2d3 · · · with d j ∈ {0,1} and c =

l−1∑

k=0

2kck ∈ N with ck ∈ {0,1} (2.4)

which we will call the binary expansion of ui. If, for some fixed m ∈ N+, we have

d0 = d jm, d1 = d jm+1, d2 = d jm+2, ..., dm−1 = d jm+(m−1) for all j ∈ N+

we call the binary expansion of ui purely periodic (with a period length of m) and can re-write Equation 2.4
to

ui = c.d0d1d2d3 · · ·dm−1,

as there are no non-periodic digit-patterns after the decimal point.

Lemma 3. If the LES A~u = ~b, A ∈ Fn×n
2 ,~b ∈ Fn

2 is uniquely solvable over F2 and Q, then the binary expansion

of any element ui of the rational solution ~u ∈Qn
Ï

is purely periodic.

Proof. This proof follows the argumentation found in [YP04]. Suppose we have ui = p/q ∈ QÏ where
p = |Ai| = cq+ r0 and q = |A| is odd. Since q is odd, it holds that q | (2m− 1) for some m ∈ N+ and hence

q =
2m− 1

l
with m, l ∈ N+.

Since

0≤
r0

q
≤ 1 and 0≤ (2m− 1)

r0

q
≤ 2m− 1 with (2m− 1)

r0

q
= l r0

where d = l r0 is an integer we can write

d =

m∑

j=1

2m− jd j−1 = d0d1d2 · · · dm−1 with d j ∈ {0,1}

as a bit-string with m bits. Since

d = (2m− 1)
r0

q

⇔
r0

q
= 2−md + 2−m

r0

q
and 2−md = 0.d0d1d2 · · ·dm−1

we easily see that the quotient of r0 and q exhibits a recursive behavior, i.e.,

r0

q
= 0.d0d1d2 · · ·dm−1+ 2−m

r0

q

= 0.d0d1d2 · · ·dm−1d0d1d2 · · ·dm−1 + 2−2m
r0

q

= 0.d0d1d2 · · ·dm−1d0d1d2 · · ·dm−1d0d1d2 · · ·dm−1 + 2−2m
r0

q
,+2−3m

r0

q

= ...

13

Chapter 2 Solving Linear Equations with Analog Hardware

and therefore the binary expansion of

ui =
|Ai|

|A|
with all ui ∈QÏ

is purely periodic.

If we actually measure a voltage representation of the solution for a given LES over the rationals and the
results are given as purely periodic binary expansions of the form

cl−1cl−2 · · · c0.d0d1d2d3 · · ·dm−1d0d1d2d3 · · ·dm−1 · · · ,

we “only” need to recover the c0 and dm−1 bit of all ui in order to interpret ~u = A−1~b as a solution over Fn
2.

Given c0 and dm−1 of a particular ui we have an alternative way to compute ϕ(ui) = ϕ(p/q) ≡ p mod 2,
which will be discussed now.

Lemma 4. Given A~u = ~b and A~x = ~b with A ∈ Fn×n
2 ,~b ∈ Fn

2, a rational solution ~u ∈ Qn
Ï

and also a binary

solution ~x ∈ F2. Consider the binary expansion of any arbitrarily chosen element ui ∈ QÏ with 0≤ i < n where,

for some l, m ∈ N+, we find that

ui = cl−1cl−2 · · · c0.d0d1d2d3 · · ·dm−1 with all c j , dk ∈ {0,1} for 0≤ j < l, 0 ≤ k < m

is purely periodic. For the corresponding entry x i ∈ {0,1} in the binary solution vector ~x the following relation

holds:

x i = ϕ(ui) = ϕ(p/q)≡ p mod 2= c0 ⊕ dm−1.

Proof. Suppose we have ui ∈ QÏ in purely periodic form with

ui = cl−1 · · · c0.d0 · · ·dm−1 for some l, m ∈ N+

which we convert to a quotient via a schoolbook trick, i.e.,

2mui = cl−1 · · · c0d0 · · ·dm−1.d0 · · ·dm−1

⇔ 2mui − ui = cl−1 · · · c0d0 · · ·dm−1− cl−1 · · · c0

⇔ ui =
cl−1 · · · c0d0 · · ·dm−1− cl−1 · · · c0

2m− 1
.

Now we know that

ui =
cl−1 · · · c0d0 · · ·dm−1 − cl−1 · · · c0

2m− 1
but also ui =

|Ai|

|A|
.

In both cases, the denominators are odd (cf. Lemma 2) and therefore

ϕ(ui) ≡ |Ai|mod 2= cl−1 · · · c0d0 · · ·dm−1 − cl−1 · · · c0 mod 2= c0 ⊕ dm−1

holds.

There is also a special case where deducing ~x is easy: if A ∈ Fn×n
2 is in upper triangular form, we know

that the determinant is the product of its diagonal elements. When the corresponding equation system is
uniquely solvable over F2, it holds that

|A|= 1.

Therefore, for any ui ∈ Z we can compute ϕ(ui) by looking at the least significant bit of ui , which is an
integer, i.e.,

x i = ϕ(|Ai|)≡ ui mod 2.

14

2.6 Discussion and Limitations of the Approach

2.6 Discussion and Limitations of the Approach

We consider the conversion trick to be an interesting curiosity, for which—besides its intended use as part
of ASOL—there might be other uses as well, i.e., in cases where computing over the rationals with sufficient
precision is more desirable, than directly over the binaries. In that sense, this is a result that has merits on
its own, possibly in a wider scope, even when not directly applicable as intended.

That said, the basic design of ASOL, as it is presented in Section 2.3, was initially simulated with Quite
Universal Circuit Simulator (QUCS), an open-source2 program for Linux. At a later stage, we used Personal
Simulation Program with Integrated Circuit Emphasis (PSPICE), a more professional program. During these
simulations, we discovered that the basic design suffers from two problems:

1. If the matrix contains cycles (see below), the circuit will never converge to a solution and oscillate
“forever”.

2. In order to apply our conversion as presented in Section 2.5, the output precision of the circuit needs
to be sufficiently high.

Additionally, it is currently not known whether the inherent oscillatory nature of the proposed architecture
ultimately leads to a cubic number of oscillations before a solution is obtained and therefore is, in that
sense, en par with traditional implementations. However, even without an advantage in complexity of
steps/oscillations, it is likely that a fully working ASOL would outperform classical architectures such as
CPUs.

We will now shortly discuss each of the two mentioned problems, what causes them and how we tried to
address them—with “some” success. Future work may naturally begin where we have failed.

2.6.1 Matrices with Cycles

If the graph corresponding to a matrix A, which may also be understood as (binary) adjacency matrix,
contains cycles, ASOL will oscillate and (at least according to our simulations) never converge to the correct
solution. Figure 2.4 shows the directed graph of such an exemplary 4× 4 matrix (bold coefficients indicate
the formed cycle):

A=

1 1 1 0
0 1 0 0
0 1 1 1

1 0 0 1

In the figure, each node corresponds to one row of the matrix, i.e., node “1” corresponds to the first row,
node “2” to the second row, etc. Incoming vertices of a node are assigned based on whether the respective
column is non-zero. If the directed graph contains a cycle, it is possible to start anywhere in the cycle and
walk the vertices back to the starting point. Having a cycle in A means, in the basic ASOL design, that the
output of one OPAMP is fed into another OPAMP whose output feeds another OPAMP etc., until the output
of the last OPAMP in the cycle is used as input to the first one. Having one or more feedback loops of this
form in the matrix (and thus the circuit) leads to an oscillatory behavior for which, at least in simulation,
we did not observe any convergence to the final solution. We have, unsuccessfully, attempted two methods
to tame this behavior:

1. Find a transformation of the LES into a different LES (or a set of LES) without cycles. Sadly, we were
not able to find such a transformation which is also trivial to compute (we want to avoid any Gaussian
elimination and variants thereof).

2See http://qucs.sourceforge.net/.

15

http://qucs.sourceforge.net/

Chapter 2 Solving Linear Equations with Analog Hardware

Figure 2.4: Directed graph of the 4× 4 matrix A with cycle of vertices

2. We have experimented with applying the coefficients of the matrix to the circuit by setting the switches
in certain timing patterns. The hope here was to set some switches, let the circuit settle to a stable
operating point and then, successively, add more and more coefficients while avoiding oscillations. We
were unable to find an easy-to-determine (or even universal) pattern of applying the coefficients.

As stated in Section 2.4, the augmented design where A is embedded into a matrix of twice the size,
invariably suffers from this problem because of the 1n matrix in the top left corner.

2.6.2 Output Precision

The clear limitation, given a device which is indeed really fast and able to solve all equation systems in n

variables, is the requirement of sufficient precision—a notion which has been mentioned a few times already.
“Sufficient” precision allows us to obtain the last bit of the binary expansion of each element of the rational
vector ~u. The overall precision is determined by two factors:

1. The precision of the “computation” depends on the precision of the elements of the circuits, i.e., how
close they behave to the ideal case which is expressed by solving the equation system mathematically.
Relevant elements are the switches, OPAMPs and resistors but also connections and wires.

2. Once the device has settled on a stable operating point, the resulting voltages at the outputs of the
OPAMPs have to be digitized to allow the application of the conversion step.

We have not examined the precision of the actual computation, but the attainable precision of the analog-
to-digital conversion is limited by the actual converter used. A typical converter, such as the Texas Instru-
ments (TI) ADS1232 provides 24 bits of digital output precision, while introducing only an insignificant
amount of noise by itself. Our argumentation in Section 2.5 implies that the smaller the determinant of
A (over the rationals), the shorter the length of the binary expansion and hence the lower the required
precision of the analog-to-digital conversion.

Since we ultimately want to speed up cryptographic attacks and examine the feasibility of our approach,
we have experimentally generated some of the binary linear equation systems which are used to execute
Golic’s attack [Gol97] against A5/1. For his attack, Golic needs to generate and solve more than 240 equation
systems of size n = 64 over F2. From the over 240 equation systems that need to be generated and solved,
we have computed (by randomly guessing parts of the key) 100 000 matrices. For all of these matrices, we
have counted which determinants occur how often. The result of our examination is depicted in Figure 2.5
in a graph that shows the percentage of determinants (y-axis), which is lower than a specific value (x -axis).
Observing the graph quite surprisingly3 reveals that nearly 50% of all matrices have a determinant below
300, while 90% are still below 3 000. Initially, this analysis was not only surprising but also encouraging.

3We assume that this result is due to the inherent structure of the generated matrices.

16

2.6 Discussion and Limitations of the Approach

0 1 2 3 4 5 6 7

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold: t

P
ro

b
a

b
ili

ty
:
p

(|
A

|)
 <

 t

Figure 2.5: Probability the determinant in Golic’s A5/1 attack is below a threshold t

Now we assume that, for all output voltages, we can obtain the first 24 bits of the binary expansion. In
order to be able to detect the period of the expansion (and thus find the last bit of the periodic sequence,
which is required by our conversion method), the period must appear at least once in the first 12 bits. Of
those randomly chosen equation systems which we have generated for Figure 2.5, only 86 566 are actually
uniquely solvable. A solution is a vector of 64 rational values, but of all those 86 566 ·64= 5 540 224 values
obtained, only a tiny fraction of 0.16% rational values have such a binary expansion. This implies that the
combined approach of using ASOL and the conversion method is not suitable for Golic’s attack—although
there might be problems (with extremely sparse matrices) which might benefit from our approach.

At this point, we realized that using the purely analog approach for improving attacks on A5/1 may not
be feasible. As a result of this, in conjunction with a student from EPFL in Lausanne, a “folder” circuit was
developed [Zha11]. This circuit basically performs modulo-2 reductions on the voltage level, by mapping
input voltages which are a multiple of 2 to 0V , and all other voltages to 1V . Placing this folder at the output
of each OPAMP, just before the feedback resistors, basically allows the circuit to compute over the binaries.
For more details and results of an initial analysis, the interested reader is referred to the thesis. However,
even with the help of these folder elements, the inherent oscillatory nature of the basic design remained as
a major problem and ultimately discouraged further research in this area.

17

CHAPTER 3

SECURITY ANALYSIS OF THE GMR-1 STANDARD

In this chapter we present the results of our analysis of the telecommunications standard used for Thuraya
satellite communication systems (and others). We document the entire process from cryptanalysis to actually
executing a real-world attack, which allows to receive and decrypt over-the-air communications in negligible
time.

3.1 Motivation

Mobile communication systems have revolutionized the way we interact with each other. Instead of depend-
ing on landline connections with fixed locations, we can talk to other people wherever we are and also
transmit data from (almost) arbitrary locations. Especially GSM has evolved into an extremely large-scale
system; with more than four billion subscribers in 2011, it is the most widely deployed standard for cellular
networks.

Cellular mobile networks require a so-called cell site to create a cell within the network. The cell site pro-
vides all the infrastructure necessary for exchanging radio signals between mobile handsets and the provider
network. For example, a typical cell site contains one or more sets of transmitters/receivers, antennas, dig-
ital signal processors to perform all computations, a Global Positioning System (GPS) receiver for timing
and other control electronics. The cells within a network have only a limited operating distance and, thus,
a certain proximity to a cell site is always necessary to establish a connection to the mobile network.

In practice, however, it is not always possible to be close to a cell site and there are many use cases in
which no coverage is provided. Workers on an oil rig or on board of a ship, researchers on a field trip
in a desert or near the poles, aid workers in remote areas or areas that are affected by a natural disaster,
journalists working in politically unstable areas, or certain military and governmental undertakings are a few
of many uses cases where terrestrial cellular networks are not available. To overcome this limitation, satellite
systems were introduced to provide telephony and data services based on telecommunications satellites. In
such systems, the mobile handset (typically called satphone) communicates directly with satellites in orbit.
Thus, coverage can be provided without the need of a highly interconnected infrastructure on the Earth’s
surface.

The GMR-1 family of European Telecommunications Standards Institute (ETSI) standards for satellite
telecommunications were derived from GSM. In fact, their specifications are an extension of the GSM

19

Chapter 3 Security Analysis of the GMR-1 Standard

standard, where certain aspects of the specification are adjusted for satphone settings. This protocol family
is supported by several providers (e.g., Thuraya, SkyTerra, TerreStar) and has continuously undergone
revisions to support a broader range of services.

While the specification documents are available online, no information about security aspects are pub-
lished. More precisely, it was not publicly known which encryption algorithms are actually used to secure
the communication channels between a satphone and a satellite. Since an attacker can easily eavesdrop on
the radio signals between satphone and satellite, even at some distance, it is obvious that weak encryption
would be a serious threat to confidentiality. At this point, it was thus unclear what effort would be needed by
an attacker to actually intercept telephony and data services for common satphone systems, which motivated
our research in this area.

3.2 Related Work

Satellite telecommunication systems are related to terrestrial cellular systems since the GMR-1 standards
are derived from the GSM standard. We can thus leverage work on the analysis of cellular systems for our
security analysis as discussed in the following.

In 1994, an email by Ross Anderson to the sci.crypt forum contained the source code of a variant
of the A5/1 algorithm. While the comments in the code indicate that the algorithm “arrived anonymously
in two brown envelopes”, Anderson is the first to propose an attack on the leaked design. In 1997, Golic
proposed a different attack, based on solving many linear equation systems (cf. Section 2.1) in the bits of
the key [Gol97]. However, since parts of the feedback configuration of the actual cipher were still unknown,
the cryptographic community only became “really” interested after the full design was uncovered in 1999.
Briceno et al. published an implementation of the GSM A5/1 and A5/2 algorithms, which they apparently
obtained by reverse engineering a GSM handset [BGW99]. However, no details about the analysis process
were ever published and it remains unclear how the algorithms were actually derived. Motivated by the
disclosure of the ciphers, there has been much work on the analysis of their security and the implementation
of the resulting attacks in hardware and software [BD00, BSW00, EJ03, BER07, NP09, DKS10]. As we
discovered (cf. Section 3.5), the cipher used in GMR-1 is related to the A5/2 algorithm, but its configuration
is different. Our attack on this algorithm builds on existing ideas for A5/2 [PFS00, BBK08], which we
extended to enable a time-ciphertext trade-off.

In addition to the academic community, also the open source movement became interested in GMR-1 and
telecommunication technologies in general. The Osmocom project1 is an umbrella for several sub projects
for the diverse standards. More specifically, the OsmocomGMR project2 set out to re-implement the protocol
stack of GMR-1. Besides an initial drop of source code, the project’s website documents information gathered
about internals of satphones and the configuration of the Thuraya network.

3.3 Technical Background

In this section we introduce the basic background regarding Thuraya’s network layout and channel setup.
This information is relevant for understanding the description of our real-world attack.

1See http://osmocom.org/.
2See http://gmr.osmocom.org/trac/.

20

http://osmocom.org/
http://gmr.osmocom.org/trac/

3.3 Technical Background

3.3.1 Network Layout

Thuraya implements the GMR-1 standard and provides satellite telephony for most of Europe, the Middle
East, North, Central and East Africa, Asia and Australia. To achieve this coverage, the network consists of
two overlapping regions, each handled by a different satellite. Thuraya satellites are operating in Geosyn-
chronous Orbit (GSO), where they do not stay on a position but follow a fixed movement pattern, typically
an analemma. Currently, there are two operational3 satellites named Thuraya-2 and Thuraya-3. The former
is relevant here, since it is centered on the Middle East and supplies most of Europe as well as a large portion
of the African continent with connectivity, see Figure 3.14.

Figure 3.1: Network coverage of the Thuraya-2 satellite

Thuraya offers a diverse range of products for fixed installations, handhelds (i.e., satphones) and even
solutions for the maritime environment. With the help of Thuraya, voice, fax and IP-based data can be
transmitted where “traditional” infrastructures (e.g., GSM, Universal Mobile Telecommunications System
(UMTS), Wireless Local Area Network (WLAN), etc.) are not available. In addition to the satellites, a set
of terrestrial gateways and one primary gateway (located in Sharjah, United Arab Emirates) handle the
entire network as depicted in Figure 3.2. Gateway stations provide the connectivity to tethered networks,
e.g., telephone calls to a landline are forwarded to the Public Switched Telephone Network (PSTN) and

3Thuraya-1 has ceased to operate in May 2007 and has been moved to “junk orbit”.
4See http://www.peter2000.co.uk/aviation/satcomms/index.html.

21

http://www.peter2000.co.uk/aviation/satcomms/index.html

Chapter 3 Security Analysis of the GMR-1 Standard

enable maintenance and configuration purposes. For this so-called ground segment, conventional frequency
bands (3.400− 3.625 GHz and 6.425− 6.725 GHz) signals are used. The user segment operates on L-band
carriers assigned to spotbeams, which are Thuraya’s equivalent to cells in GSM (albeit covering far more
area). In the L-band, the frequency band from 1.525 to 1.559 GHz is assigned for space-to-earth (downlink)
communication while the uplink operates between 1.6265 and 1.6605 GHz. Uplink and downlink are
divided into 1087 paired carrier frequencies with a spacing of 31.25 KHz.

Ground Segment

PSTN

User Segment

C
-B

and

C
-B

andC
-B

a
n
d

C
-B

a
n
d

L-
B
an

d
L-

B
an

d

Figure 3.2: Layout of the Thuraya network

3.3.2 Channels

Just like in GSM, the Time Division Multiple Access (TDMA) time slot architecture, which partitions a carrier
frequency into disjunct timeslots of a fixed length, is employed in Thuraya. Figure 3.3 shows how a TDMA
frame (middle) is split into 24 timeslots (bottom) of 5

3
ms each. 16 TDMA frames are grouped together into

one multiframe (top), which is 640 ms long. Furthermore, multiframes are consolidated into a superframe,
of which 4 496 comprise a hyperframe. It should be noted that each TDMA frame has a 19-bit TDMA frame
number; numbering starts at 0 and the number is incremented with each new frame.

22

3.3 Technical Background

...

Figure 3.3: TDMA architecture of GMR-1 networks

Several logical channels (called channels from now on) can share a carrier frequency by being mapped to
different timeslots. Due to this architecture, a channel is uniquely determined by a frequency and a sequence
of Timeslot Numbers (TNs). There are different types of channels, but all are either Traffic Channels (TCH)
for voice, fax or IP-based data, or Control Channels (CCH). Data is sent over these channels in the form
of frames (i.e., blocks of consecutive bits) that are encoded (cf. Subsection 3.3.3) by adding redundancy
to protect against transmission failures. Frames are enumerated by their respective TDMA frame numbers,
which we simply call frame numbers from now on. For some channels, the encoded data is subsequently
encrypted, see Subsection 3.3.3. The encoded (and encrypted) data is finally modulated before it is trans-
mitted via the phone’s antenna. The coding scheme differs from channel to channel and is dependent on
the respective reliability requirements as defined in the various documents of the standard.

Specific channels relevant for our attack are the Frequency Correction Channel (FCCH), the Common
Control Channel (CCCH) and the Traffic Channel-3 (TCH3). The FCCH is initially (e.g., after power-up)
used by the satphone to determine its relative time and frequency error in order to synchronize with the
satellite. The CCCH is used to send information to the phone when a new channel (e.g., TCH3) needs to be
established5. These assignment messages contain an Absolute Radio-Frequency Channel Number (ARFCN)
and a TN, which is, as explained above, all that is required to use the channel. After TCH3 has been set up
on the uplink and downlink, it can be used to transmit speech data.

In Subsection 3.7.1 we will go more into the process of translating ARFCNs into frequencies and how we
can actually tune to the TCH3 channel.

3.3.3 Encoding and Encryption

As mentioned before, all data has to be encoded before it is sent to travel the distance of 36 000 km between
ground and satellite. Encoding always increases the size of the encoded data, thus adding redundancy

modulationencryption
intraburst

multiplexing
scrambling

channel

interleaving

convolutional

encoding

block

encoding

Figure 3.4: Generic encoding (and encryption) scheme for information in the GMR-1 system

5TCH3 is typically established at the beginning of a call.

23

Chapter 3 Security Analysis of the GMR-1 Standard

which allows error detection and possibly correction. Figure 3.4 shows the pipeline of encoding, encryption
and modulation. Please note that, depending on the channel over which data is sent, the actual encoding
parameters and modulation schemes may differ. The general encoding procedure is as follows:

Each channel uses the following sequence and order of operations:
• The information bits are encoded with a systematic block code, i.e., Cyclic Redundancy

Check (CRC), building words of information and parity bits;
• these information and parity bits are encoded with a convolutional code, building the

coded bits;
• the coded bits are reordered and potentially interleaved over multiple bursts;
• the interleaved bits are scrambled and, in some cases, multiplexed with other bits

(before or after encryption);

— [ETS02, p. 11]

To protect against eavesdropping of data sent over the air, the encoded bits are encrypted with a propri-
etary cipher. However, doing it the way it is done in GMR-1 leads to a property we exploit for our real-world
attack (cf. Section 3.6).

Satphone Network

(has Ki) (has Ki)
Authentication request RAN D
←−−−−−−−−−−−−−−−−−−−−−−

SRES = A3(Ki; RAN D)
Authentication response SRES
−−−−−−−−−−−−−−−−−−−−−−→

Kc = A8(Ki; RAN D)
Cipher mode “ON”

←−−−−−−−−−−−−−−−−−−−−−− Kc = A8(Ki; RAN D)

Cipher mode complete
−−−−−−−−−−−−−−−−−−−−−−→

...

d0 = A5(Kc; 0, N0, · · ·)
Data N0,d0

−−−−−−−−−−−−−−−−−−−−−−→

Data N1,d1
←−−−−−−−−−−−−−−−−−−−−−− d1 = A5(Kc; 1, N1, · · ·)

Data N2,d2
←−−−−−−−−−−−−−−−−−−−−−− d2 = A5(Kc; 1, N2, · · ·)

...

Figure 3.5: Protocol for establishing a session key Kc between satphone and provider network

Encryption in GMR-1 is performed on a per-session basis, i.e., for the duration of one call a session key Kc

is established (see Figure 3.5 for a sketch of the respective protocol). This key is derived from a challenge
RAN D sent by the network and a long-term key Ki, known only to the satphone and network. In the

24

3.4 Reverse Engineering

specifications, the key derivation algorithm is denoted as A8, which serves the same role as the A8 function
in GSM. On the handheld side it is implemented on the phone’s SIM card, where also its long-term key is
stored.

With the help of the session key, data can be encrypted with an algorithm denoted as A5, or, A5-GMR-1.
This algorithm is a stream cipher which encrypts data based on the session key and its TDMA frame number
and direction (i.e., whether it is received or sent by a satphone). A second property of the protocol is that
it simultaneously authenticates the phone against the network—with the help of the A3 algorithm. Overall,
this protocol is strikingly similar to what is specified for GSM.

3.4 Reverse Engineering

The stream cipher used in GMR-1 was reverse engineered from a software update package for the Thuraya
SO-2510 by a colleague from our research institute, Ralf Hund. The firmware was disassembled with a
commercial disassembler; the cipher was found with the help of a heuristic: subfunctions in the disassembly
were ranked according to their percentage of XOR/SHIFT instructions, which revealed the four routines,
each implementing one Linear Feedback Shift Register (LFSR).

More details on this procedure and the general methodology, which is related to the approach presented
in Section 4.4, can be found in our joint paper [DHW+12] and the respective, upcoming Ph.D. thesis.

3.5 The A5-GMR-1 Stream Cipher

In this section we present the cipher used in the GMR-1 standard. The cipher is termed A5-GMR-1 and
surprisingly similar to a known design, used in GSM.

3.5.1 Structure

The cipher used in GMR-1 is a typical stream cipher (cf. Figure 3.6a); its design is a modification of the
A5/2 cipher (cf. Figure 3.6b), which is used in GSM networks. The cipher uses four LFSRs which are
clocked irregularly. We call these registers, starting with the topmost one, R1,R2,R3 and R4.

(a) A5-GMR-1 (b) A5/2

Figure 3.6: Comparison of stream ciphers used in GMR-1 and GSM

Comparing A5/2 and A5-GMR-1, we see that the structure of the registers is basically the same, i.e., the
LFSRs have the same length and only three of them are connected to the output. However, the feedback

25

Chapter 3 Security Analysis of the GMR-1 Standard

A5-GMR-1 A5/2
Size Feedback polynomial Taps Final Feedback polynomial Taps Final

R1 19 x19 + x18 + x17+ x14 + 1 1,6,15 11 x19+ x5+ x2+ x + 1 12,14,15 18
R2 22 x22 + x21 + x17+ x13 + 1 3,8,14 1 x22+ x + 1 9,13,16 21
R3 23 x23 + x22 + x19+ x18 + 1 4,15,19 0 x23 + x15+ x2+ x + 1 13,16,18 22
R4 17 x17+ x14 + x13+ x9+ 1 1,6,15 - x17 + x5+ 1 3,7,10 -

Table 3.1: Configuration of the LFSRs in A5-GMR-1 and A5/2

polynomials and also the selection of input taps for the non-linear majority-functionM with

M : {0,1}3 7→ {0,1}
�

x〈0〉, x〈1〉, x〈2〉
�

2
7→ x〈2〉x〈1〉 ⊕ x〈2〉x〈0〉⊕ x〈0〉x〈1〉

were changed. Also, the positions of the bits that are XORed with the respective outputs of the majority
functions are different. In A5-GMR-1, all feedback polynomials are pentanomials, which is not the case for
A5/2, as shown in Table 3.1.

3.5.2 Mode of Operation

Next we focus on the mode of operation. Clocking a single LFSR means evaluating its respective feedback
polynomial and using the resulting bit to overwrite the leftmost position of the LFSR, after shifting its current
state by one bit to the right. When the cipher is clocked for the l-th time with irregular clocking active, the
following happens:

1. The irregular clocking component C evaluates all taps of R4, the remaining registers are clocked
accordingly, i.e.,

a) IffM (R4〈1〉,R4〈6〉 ,R4〈15〉
) = R4〈15〉

, register R1 is clocked.
b) IffM (R4〈1〉,R4〈6〉 ,R4〈15〉

) = R4〈6〉 , register R2 is clocked.
c) IffM (R4〈1〉,R4〈6〉 ,R4〈15〉

) = R4〈1〉 , register R3 is clocked.

2. The taps of R1,R2 and R3 are evaluated and one bit of keystream is output accordingly, i.e.,

zl =M
�

R1〈1〉,R1〈6〉 ,R1〈15〉

�

⊕M
�

R2〈3〉,R2〈8〉 ,R2〈14〉

�

⊕M
�

R3〈4〉 ,R4〈15〉
,R3〈19〉

�

⊕ R1〈11〉
⊕ R2〈1〉 ⊕ R3〈0〉

is generated.
3. R4 is clocked.
The cipher is operated in two modes, initialization and generation mode. Running the cipher in the former

mode includes setting the initial state of the cipher, which is done in the following way:
1. All four registers are set to zero.
2. A 64-bit initialization vector α =

�

α〈0〉, ...,α〈63〉

�

is computed by XORing the bits of the 19-bit frame
number N and 64-bit session key K , i.e.,

α = f (K , N) =K〈0..2〉||K〈3〉⊕ N〈6〉||K〈4〉⊕ N〈7〉||K〈5〉⊕ N〈8〉||K〈6〉⊕ N〈9〉||K〈7〉⊕ N〈10〉||K〈8〉⊕ N〈11〉||

K〈9〉 ⊕ N〈12〉||K〈10〉 ⊕ N〈13〉||K〈11〉⊕ N〈14〉||K〈12〉⊕ N〈15〉||K〈13〉⊕ N〈16〉||K〈14〉⊕ N〈17〉||

K〈15〉 ⊕ N〈18〉||K〈16..21〉||K〈22〉⊕ N〈4〉||K〈23〉⊕ N〈5〉||K〈24..59〉||K〈60〉 ⊕N〈0〉||K〈61〉⊕ N〈1〉||

K〈62〉 ⊕ N〈2〉||K〈63〉 ⊕ N〈3〉

26

3.6 Cryptanalysis

3. The bits of α are re-ordered to α′ with

α′ =
�

α〈15〉,α〈14〉, ...,α〈0〉,α〈31〉,α〈30〉, ...,α〈16〉,α〈47〉, ...,α〈32〉,α〈63〉, ...,α〈48〉

�

and clocked into all four registers in this order. To clock one bit of α′ into R1, its feedback polynomial
is evaluated and the resulting bit then clocked into R1, after XORing it with the α′ bit. The same bit of
α′ is also clocked into R2, R3 and R4. Then, the second bit of α′ is clocked into all four registers in this
manner and so on. While doing this, irregular clocking is deactivated, i.e., all registers are clocked for
each bit of α′.

4. The least-significant bits of all four registers are set to 1, i.e., R1〈0〉 = R2〈0〉 = R3〈0〉 = R4〈0〉 = 1.
We denote the whole initialization process by g, where

β = β〈0..18〉
︸ ︷︷ ︸

R1

||β〈19..40〉
︸ ︷︷ ︸

R2

||β〈41..63〉
︸ ︷︷ ︸

R3

||β〈64..80〉
︸ ︷︷ ︸

R4

= g(K , N),

is a 81-bit string, comprised of the consecutive bits of the four initialized registers. After all registers are
initialized, irregular clocking is activated and the cipher is clocked 250 times. The resulting output bits are
discarded.

Now the cipher is switched into generation mode and clocked for 2m times, generating one bit of
keystream at a time. Here, m is the length of an encrypted frame. Depending on the direction6 bit, ei-
ther the first half or the second half of the 2m keystream bits is used for encryption/decryption. We denote
the l-th keystream bit by z

(N)

〈l〉
, where 0 ≤ l < 2m is the number of irregular clockings (after warm-up) and

N the frame number that was used for initialization. Since our cryptanalysis will focus on the downlink, we
denote the continuous keystream for frames N , N + 1, ... (as decrypted by the phone) by z, where

z = z
(N)

〈0..m−1〉
||z
(N+1)
〈0..m−1〉

||z
(N+2)
〈0..m−1〉

||z
(N+3)
〈0..m−1〉

||z
(N+4)
〈0..m−1〉

||...

is the concatenation of the first halves of z(N), z(N+1), ... respectively. The choice of m depends on the type
of channel, for which the data is encrypted or decrypted. For the TCH3 channel, each frame has a length of
m = 208 bits.

3.6 Cryptanalysis

The attack we present here is inspired by previous attacks [PFS00, BBK03] on A5/2. Please note that we
treat bitstrings as column vectors7 and vice versa. We now briefly review the several weaknesses (which are
either due to the design of the cipher or due to the use of the cipher) which we exploit for our attack on
GMR-1:

1. Given R4, the clocking behavior of A5-GMR-1 is uniquely determined.
2. Since the inputs to each majority component are only from one register, one bit of keystream can

always be expressed as an easy-to-linearize quadratic equation over F2.
3. In GMR-1, encryption is applied after encoding (which is entirely linear in F2) and scrambling8.

6The first m bits are used on the handset’s side for decryption, on the provider network side for encryption
7Coding theory traditionally uses row vectors, which is why the equations we obtain for encoding and decoding look slightly

different.
8While encoding adds redundancy, scrambling is used to “[...] randomize the number of 0s and 1s in the output bit

stream.” [ETS02, p. 22].

27

Chapter 3 Security Analysis of the GMR-1 Standard

4. For each two keystreams generated by the same session key but different frame numbers, the respec-
tive initial states are linearly related by the XOR-differences of the frame numbers.

Due to the first and second observation and given enough keystream bits for a particular frame N , we can
guess R4. Based on the guess, we clock the entire cipher several times and generate a linearized system of
equations over F2, i.e.,

Ax = z(N).

These equations describe keystream bits as linear combinations of terms which either are individual bits or
products of two bits from the initial state of R1,R2 and R3. If we guess R4 correctly and A has full rank,
solving the equation system gives the correct initial state which can easily be used to obtain the session key.
Please note that, even if the session key is fixed, for different frame numbers not only the keystream but
also the initial state and the matrix describing its relation to the keystream will be different. The required
number of linearly independent equations, and hence the minimum9 number of known keystream bits, is
denoted as v with

v =

�
18− k1

2

�

+

�
21− k2

2

�

+

�
22− k3

2

�

︸ ︷︷ ︸

linearized variables

+(18− k1) + (21− k2) + (22− k3)
︸ ︷︷ ︸

original variables

,

where k1, k2 and k3 are the number of bits we may additionally guess for R1,R2 and R3 respectively. Fixing
variables helps to decrease the size of the equation systems and the number of required keystream bits, but
also increases the average amount of bits to guess for the whole attack to 215+k1+k2+k3 .

We now use the principle we have outlined above (and the fact that encryption is applied to encoded data)
for a ciphertext-only attack which explicitly targets the TCH3 channel in GMR-1. Encoding, scrambling and
encrypting a 160-bit speech-frame d(N) with frame number N can be expressed as

c(N) = Gt d(N)⊕ s⊕ z(N),

where Gt is the transpose of the 160× 208 generator matrix G of the code, s is a 208-bit pseudo-random
scrambling sequence, z(N) the keystream generated for this frame and c(N) the resulting 208-bit codeword.
G can be determined and is known (cf. Subsection 3.3.3), therefore a parity-check matrix H can be derived
from G with Hc = 0 iff c = Gt d . Due to this property, if we invert scrambling for a codeword c(N), we get

H
�

c(N) ⊕ s
�

= H
�

Gt d(N)⊕ z(N)
�

= Hz(N).

Given a syndrome (i.e., a bit vector indicating whether decoding was completed without errors, potentially
enabling error correction) vector r(N) = H

�

c(N) ⊕ s
�

, we can again set up an equation system in variables
x0, x1, ..., xv−1 of the initial state by guessing R4, clocking the cipher 250 times (to account for the warm-up
phase) and another 208 times, i.e.,

H(Ax) = Sx = r(N).

Here, A is the 208 × v matrix that describes the linear relation between x and the bits z
(N)
0 , z(N)1 ..., z(N)207

generated by the cipher. Please note that H is a 48×208 matrix and subsequently S is a 48× v matrix which
implies that for v > 48 this system is not uniquely solvable. In order to obtain an equation system where
S has full rank, we need to generate and collect equations from several encrypted frames for consecutive
frame numbers N , N + 1, For a fixed session key, the initial states for different frame numbers are

9We need at least as many keystream bits as we have variables and thus equations. However, since not all equations we obtain by
clocking the cipher based on R4 are necessarily linearly independent, we may need even more keystream bits.

28

3.6 Cryptanalysis

linearly related by the XOR-differences of the frame numbers. Taking these differences into account when
generating equations allows to build a uniquely solvable equation systems and solving this equation system
gives a potential initial state which could have generated z(N).

Now we describe the actual steps of our attack for which we assume that we are in possession of n 48-bit
syndromes

r(N0) = H
�

c(N0)⊕ s
�

, ..., r(Nn−1) = H
�

c(Nn−1)⊕ s
�

which correspond to TCH3 downlink data encrypted under the same session key. Our attack is parameterized
by n, k1, k2, k3 and N0 and recovers the initial state β = g(K , N0). Before we proceed, we need to introduce
a helper method:

ψ(δ) Depending on the configuration of the attack, the result will be a string of 81 bits. It will contain
only the bits of δ which are at positions in the state of the cipher, whose bits we have guessed
(i.e., R4 and parts of the other registers); all others will be 0.

The attack works by iterating over all possible values for the parts of the cipher we guess:
1. Systematically guess the bitstring γ which has 20+ k1 + k2 + k3 bits (also incorporating the fixed bit

per LFSR). For each syndrome 0≤ i < n do the following:

a) Compute the 81-bit difference δ = g(0, N0)⊕ g(0, Ni) in the initialization state for frame number
N0 and Ni.

b) Modify γ by XORing it with the corresponding positions of δ, i.e., γ′ = γ⊕ψ(δ).
c) Based on γ′ and δ generate a linearized 458× v matrix B (and vector y for the one constant

per equation) which describes the linear relation between the initial state for N0 and the 458
keystream bits generated for r(Ni).

d) Take the warm-up phase into account by discarding the first 250 rows of B to obtain a 208× v

matrix B′ and also discarding the first 250 elements of y to obtain y ′.
e) Compute the 48× v matrix S′ and vector r ′ such that

S′ = HB′ and

r ′ = Hy ′ ⊕ r(Ni) = H
�

y ′ ⊕ c(Ni)
�

and add those rows of S′ (and the corresponding bits from r ′) to the equation system Sx = r,
which are linearly independent from all previously existing rows of S.

f) Abort if S has full rank.

2. Solve the equation system by computing x = S−1r and combine the guessed bits and x appropriately
to obtain the 81-bit initialization state candidate β .

3. Initialize A5-GMR-1 with β and clock it to obtain 208 bits of keystream z′(N0) for frame number N0

and test whether
H
�

c(N0) ⊕ s⊕ z′(N0)
�

= 0.

If this equation holds, applying the obtained keystream produces a valid codeword. This implies we
have produced the correct keystream and therefore (most likely) the correct initial state.

Once we have β = G (K , N0), we can set up another equation system

Lα = β ⊕ ε with α = L−1 �β ⊕ ε
�
=F (K , N0)

where L describes the process of clocking α into all four LFSRs (and setting the lowest bit per LFSR to 1
which is expressed by ε). Solving the equation system resolves the initialization vector α from which we
can easily derive the session key K =F (α, N0).

29

Chapter 3 Security Analysis of the GMR-1 Standard

3.7 A Real-World Attack

In this section, we describe the details of our real-world attack on the TCH3 channel in the Thuraya network.

3.7.1 Recording TCH3 Data

Executing the attack requires acquiring and setting up appropriate hardware to generate and receive real-
world data in the Thuraya network.

Satphone AntennaSoftware RadioLaptop Central Gateway

Figure 3.7: Schematic of the attack set-up

Figure 3.7 shows a schematic of our attack set-up: we use a satphone to establish a call in the Thuraya
network and place an antenna nearby, thus receiving all downlink transmissions. Attached to the antenna
is a Software Defined Radio (SDR) system. With the help of the SDR hardware and some software running
on the laptop, we can demodulate and decode received transmissions. It is important to note here that we
only receive the downlink and not the uplink. We focus on this part of the communication for two reasons:

1. Demodulation of downlink transmissions is (mostly) readily available as part of OsmocomGMR, while
this is not true for the uplink.

2. The downlink can be received and demodulated (at least) in the entire area, which is assigned to one
spotbeam (see below).

Furthermore, if we can decrypt the downlink, we can also decrypt the uplink—both share the same session
key for encryption.

The software we use here is based on the OsmocomGMR10 project which is maintained by Sylvain Munaut.
The aim of the Osmocom project family is to establish open source implementations of a wide range of
communication standards, e.g., GSM, TETRA and even GMR-1. OsmocomGMR itself uses the GNURadio
project11, which is an open source framework and provides signal processing functionalities. Although the
implementation of OsmocomGMR is still in its infancy it is evolved enough for our purposes; we were able
to use it with only a few tweaks—although not in a completely automated fashion.

10See http://gmr.osmocom.org/trac/.
11See http://gnuradio.org/.

30

http://gmr.osmocom.org/trac/
http://gnuradio.org/

3.7 A Real-World Attack

Figure 3.8: Thuraya spotbeams (with numeric IDs) over Europe

In addition to software, the OsmocomGMR project also provides information regarding the configuration
of the Thuraya network. As shown in Figure 3.812, there are two spotbeams assigned to Germany, they have
the IDs 289 and 291. Since our experiments were performed in Bochum, we picked the spotbeam with
the former ID, to which (as stated on the same website) the ARFCN frequency identifier number 1007 is
assigned. Given the fact that the downlink frequency band is divided into 1087 physical channels (starting
at 1.525 GHz) with a spectral bandwidth of 31.25 KHz, ARFCN 1007 translates into a radio frequency of

fRF = 1.525 GHz+
31.25

2
KHz+ 1007 · 31.25 KHz= 1.556484375 GHz

on the downlink.
To obtain real-world data for our attack, we used our Thuraya satphone and established some calls to a

landline. By simultaneously tuning the SDR to fRF , we were able to intercept TCH3 assignments that were
sent to our phone via the CCH (cf. Subsection 3.3.2). After some experimentation we found that TCH3 is
typically assigned to one of these three ARFCNs: 1008, 1009 and 1011—which is now also documented on
the website. Upon observing the ARFCN assignment, we could tune to the newly assigned frequency and
capture most of the encrypted downlink speech data (missing only a fraction at the beginning of the call).
All subsequent data (including frame numbers) was stored on a harddisk, and could directly be used in our
cryptanalysis.

3.7.2 Parity-check Matrix

As stated in the previous sections, a key step to move from a known-plaintext to a ciphertext-only scenario
is collapsing all linear encoding steps into a single matrix G and deriving the respective parity-check matrix
H. Obtaining G is straightforward: all relevant encoding steps for the TCH3 channel can be found in the
respective document of the specification [ETS01b]. These steps include:

1. Block encoding
2. Convolutional encoding
3. Interleaving
4. (Scrambling)
5. Multiplexing

12See http://gmr.osmocom.org/trac/wiki/Thuraya_Beams/.

31

http://gmr.osmocom.org/trac/wiki/Thuraya_Beams/

Chapter 3 Security Analysis of the GMR-1 Standard

Each step—except for scrambling—can be modeled as multiplication of an information vector with an ap-
propriately constructed matrix Mi with 0 ≤ i ≤ 3. Given these matrices, their product is the 160× 208
encoding matrix

G =

3∏

i=0

Mi.

The corresponding parity-check matrix H with

H(Gt d) = 0 for all d ∈ {0,1}160

can be obtained with these steps:
1. Use Gaussian elimination to find a permutation matrix P with

LGP = G′ =
�
I160|T
�

for some L, where the left hand side of G′ is the 160× 160 identity matrix. Here, G′ is the systematic

form of the encoding matrix.
2. From the systematic form of G, H′ can be obtained easily, i.e.,

H′ =
�
Tt |I48
�

.

The result is a 48× 208 matrix, which is appropriate for code words encoded with G′.
3. From H′ the parity-check matrix H for the actual form of G can be obtained via another matrix multi-

plication, i.e.,
H = H′P−1.

The resulting matrix is given (rows encoded hexadecimally) in Figure 3.9.

3.7.3 Parameterization

As described in Section 3.6, our ciphertext-only attack on TCH3 is parameterized by the tuple (n, k1, k2, k3).
To actually execute the attack, we have experimentally established a working set of parameters.

First of all, we have determined how many streaks of TCH3 frames with consecutive frame numbers of a
certain length we can expect to obtain with our eavesdropping setup. By streak we denote a set of received
frames with numbers N0, N1, N2, ..., Nn−1 with Ni = Ni−1 + 1 for all 0 < i < n, where n denotes the length
of a streak. We have analyzed the TCH3 data of several 10 second calls and plotted the percentage of
observed streak lengths in Figure 3.10. The longest streak we have observed consists of 56 TCH3 frames,
which served as an upper bound for the next step.

In order to determine how many bits of the LFSRs R1,R2 and R3 we need to guess13 (in addition to com-
pletely guessing R4), we have performed experiments: we have systematically evaluated all combinations
of k1, k2 and k3 with the aim to minimize k1 + k2 + k3. We found that we need to guess at least 6 bits
of R1 to R3, in order to always achieve full rank from 56 TCH3 frames. Of the 28 possibilities, only three
were found to always guarantee full rank of the obtained matrices, see Table 3.2. Looking at the results, we
picked k1 = 0, k2 = 2, k3 = 4 because the average and maximum number of frames required to achieve full
rank is lowest. Also, we can be certain that 33% of the frame number streaks (cf. Figure 3.10) are at least
24 frames long. This is helpful, because now we can pick multiple, different subsets of 24 TCH3 frames for
our attack, which allows to validate any session key we may find.

13Please note that, for simplicity, we always guess the Least Significant Bits (LSBs) of each LFSR. It is certainly an interesting
question which bits should be guessed for optimal performance.

32

3.7 A Real-World Attack

2008020200802000028000a0202020a080800000800000000000

0410014010001000004050144450140044104440400000000000

080200808020080000a000280808082820200000200000000000

4415044000400405005000044454441400401000100000000000

8020080020080200022000888080808808080000080000000000

0004010050440100001050544000101454541040040000000000

4014040040500005000000104050400010501000000000000000

8028080080a0000a0000002080a0800020a02000000000000000

a0280802002020020080a0a02080008080800000008000000000

4400054010401004004050140410144004104400004000000000

280a020080080800802028280820002020200000002000000000

4414040010400404001014005454501004541400001000000000

8822008020800208020088888008000808080000000800000000

0405054050000104000014544044505454541040000400000000

0000080000800008802088000880808808000008000000000000

000002000020000a0200a000802020a080000080000000000000

880a0a82800808088280a00088a8a82000080000000080000000

0000000000000400004000504050004010105040000040000000

a0220a80a080020a00a02800a0a8a80800800000000020000000

0411000100400105005014540454000454405400000010000000

28280a82202020028220880028a8a88000200000000008000000

4405014140441000001014140400141054541440000004000000

0411044100040000001044400004444444444004000000000000

200a020020280002800000082028200008280800000000000000

a802088000a82800828020008828282080880000000000800000

0410004050001401004040145440544014001440000000400000

a8200a0000a80a0800a00800a088880820a00000000000200000

4004044110040501005004444414500454004400000000100000

a808028000a822020220800028a0a08008280000000000080000

0004050150441104001010540040141010145440000000040000

0411004100440004400000400444040040444000000000000000

0000008000080002808028002008082820000020000000000000

282a00828088000a800020008828a82000080000000000008000

4404054110000001000010141450041014401400000000004000

882a0800a0a0000a80000800a088a80800800000000000002000

0010004110440004000004501450100450545000000000001000

a02a02022028000a8000800028a0a88000200000000000000800

4010000100000004000040040444444004040400000000000400

5400054150000000000000545400540054005400000000000000

0411000100400005004014401440001450444010000000000000

000800028080280002002020a080000080000000000000000080

4010050100001400000040005000505010501040000000000040

00020000a0200a00008008082820000020000000000000000020

4015040010400505004004145440400000501000000000000010

0020000220082200002080808808000008000000000000000008

0010000110041100001040404404000004000000000000000004

4014050040400000010050100040505050501040000000000000

0822008200880008800000800888080080888000000000000000

Figure 3.9: Encoded rows of the parity-check matrix of the TCH3 channel in Thuraya

k1 k2 k3 #Variables #Frames (avg.) #Frames (max.)

0 2 4 532 12.42 24
0 3 3 532 12.73 25
1 2 3 533 13.01 25

Table 3.2: Guessed bits of the LFSRs R1, R2 and R3

33

Chapter 3 Security Analysis of the GMR-1 Standard

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

Length of consecutive frame number streak

P
e

rc
e

n
ta

g
e

 o
f
s
tr

e
a

k
 l
e

n
g

th

Figure 3.10: Proportion of frame number streak lengths

3.7.4 Implementation

With the parameters we have established in the previous section, we need to generate and solve on average
221 equation systems with matrices of dimension 532×532 and consequentially test as many state candidates
(by decoding via another matrix operation) to obtain one session key. To speed up the actual attack, we
exploit the fact that the matrices describing the linear relation between internal state of the cipher and
keystream depend only on the bits we guess. These matrices are simply multiplied with H, which is fixed
and static (cf. Subsection 3.3.3 and Subsection 3.7.2). Thus, once we have fixed a set of parameters we are
going to use in the attack, we need to generate and store the resulting S matrices only once. This effectively
splits the execution of the attack into a pre-computation and recovery phase:

• In the pre-computation phase, a parameter set is chosen and for each possible guess we generate and
store the respective matrix. This step has to be done only once.

• In the recovery phase, the generated matrices are read from disk and subsequently used to build and
solve equation systems for actual TCH3 channel data. This step has to be repeated for every new
GMR-1 TCH3 session.

To further optimize the execution time of the recovery phase, we apply two more tricks:

1. In the pre-computation phase, we already test the matrices for linear dependencies and bring them
in upper triangular form. Since we have to apply the resulting row operations also to the syndromes
(i.e., the results of multiplying ciphertexts with H) in the recovery phase, we have to track and store
them, too. While this requires some more storage space, not having to do linearity testing in the
recovery phase and knowing that the lower tridiagonal part of each matrix is zero is a considerable
improvement in terms of computation time and storage space.

2. We use a freely available14 and very fast implementation of the Lempel-Ziv (LZ) compression algo-

14See http://www.quicklz.com/.

34

http://www.quicklz.com/

3.7 A Real-World Attack

rithm [ZL77] in order to minimize the required storage space and the performance impact of reading
and writing matrices (from/to a standard harddisk). Although compression introduces some computa-
tional overhead in the pre-computation phase, decompression is fast enough to significantly speed-up
our attack (when compared to an attack using uncompressed files).

Although our attack only uses TCH3 data, our implementation is also able to generate and handle mixtures
of Fast Associated Control Channel-3 (FACCH3), TCH3 and keystream frames for an attack, which makes it
considerably more complex. However, more details on the implementation are not relevant here, which is
why the results of our attack will be presented next.

3.7.5 Results

In this section we shortly subsume the results of executing our proposed attack and the hardware we have
used. Figure 3.11 shows the components we have used to perform the attack:

Figure 3.11: The attack setup: (1) antenna, (2) software radio, (3) laptop, (4) satphone

1. Antenna.
An accessory15 antenna (typically used for installing satphones in cars) was used to receive Thuraya
traffic.

2. USRP-2.
An Ettus USRP-2 device was used to digitize received EM transmissions (coming from the antenna)
and send them to an attached laptop.

3. Laptop.
A laptop is used to control the USRP-2, apply demodulation steps and execute the implemented attack.

4. Satphone.
A Thuraya SO-2510 satphone was used as handheld device for communicating over the Thuraya
network.

15Earlier attempts at building such an antenna failed; assembling helical antennas is a very delicate process and requires experience
and very high precision.

35

Chapter 3 Security Analysis of the GMR-1 Standard

In the pre-computation phase, we have generated approx. 400 GB of system matrices in a negligible
amount of time. We have executed a 30 second call between satphone and landline, of which more16 than
27 seconds of TCH3 data could be saved to disk. Given the eavesdropped data and pre-computed matrices,
we were able to find the session key for multiple subsets of 24 frames in 32.1 minutes (on average).

It must be stressed here that—since the speech codecs of Thuraya still have not been reverse engineered—
actually listening to a conversation is not possible for us. However, since the codecs can be reverse engi-
neered too (potentially even by applying similar heuristics as used by us) this is no real obstacle.

3.8 Discussion and Future Work

Based on the reverse engineered details of the A5-GMR-1 stream cipher, we have have formulated an effi-
cient and effective ciphertext-only attack. We have detailed the hardware and software components used to
capture and decode downlink speech data which ultimately allowed us to execute the proposed attack with
a non-optimized implementation. Given only a handful of encrypted TCH3 frames and some precomputed
data, we were able to reveal the encryption key in half an hour of computation, demonstrating that our
attack is not only feasible but quite practical.

Our attack and its implementation is specifically tailored for a real-world attack on Thuraya, but the
implications most likely apply to all communication systems based on the GMR-1 standard. Given the fact
that the downlink can be received at least17 everywhere in the assigned spotbeam, we issue the explicit
warning that solely GMR-1 based systems should not be relied on if strong privacy is required.

In the following sections we will discuss two aspects necessary to be solved (additionally to reverse engi-
neering the audio codec) in order to extend our work to a fully working eavesdropper.

3.8.1 Uplink Interception

We currently intercept downlink communication in the L-Band, which gives us access to only one half of
a call. In contrast to the downlink, which is broadcast to a vast area, the uplink is sent with a directional
antenna utilizing only a minimum of power. The Thuraya SO-2510 has a small, helical antenna which
not only radiates where the satphone is pointed at, but also to the sides—although with lower power. In
conjunction with Prof. Kronberger from Cologne University of Applied Science, we have determined this
level of power by establishing a call on the roof of the university while holding the phone strictly vertical
and measuring the side radiation from a fixed distance. Using a signal analyzer and a horizontally polarized
antenna with 5.85 dB gain, the uplink signal was detected at 1.65 GHz and determined to have a power
of −33 dBm at a distance of 15 m. This implies that, assuming a free path loss of 110 dB and further
propagation losses of 20–30 dB, it is entirely possible to directly receive the uplink signal at distances of
5 Km and more18, given a direct line of sight.

We speculate that a more indirect approach might exploit the fact that Thuraya-2 and Thuraya-3 operate
according to the “bent pipe” principle. In this setup, the satellite just acts as a redirector of incoming
data, i.e., uplink data sent by a satphone is simply redirected to the ground segment (although shifted to
a different frequency band). This implies that uplink data of mobile devices in the user segment can be
intercepted by placing a satellite dish “closely” to the central gateway. However, implementing this method

16The first 3 seconds were lost due to the time it took for extracting the assigned ARFCN and manually re-tuning the SDR hardware
accordingly.

17The Europe-based OsmocomGMR project was even able to receive and identify spotbeams assigned to South-Africa.
18Using a high gain antenna and/or a more sensitive receiver should significantly boost reception levels.

36

3.8 Discussion and Future Work

of interception is hindered by the lack of public specifications for the C-Band, which is used to transmit
data between ground segment and satellite. Another difficulty stems from the fact that several concurrent
communications are sent over this link to the gateway in parallel, therefore the L-Band downlink and C-
Band uplink data need to be matched. To us, it seems nonetheless reasonable to assume that this can be
done, when considering that Thuraya handles “only” 13 750 calls simultaneously, up- and downlink share
frame numbers (and we can get frame numbers from the downlink) and timing of uplink data in the C-Band
can probably be predicted quite accurately.

3.8.2 Real-time Decryption

Our approach represents a proof-of-concept implementation with a fairly complex (but flexible) program-
library, written in plain C. Our only optimization is to use multi-threading, which distributes the search space
across all cores of Intel’s Xeon E5540. With eight concurrent threads, our attack requires 32.1 minutes (on
average) to derive a session key. Real-time decryption is typically (e.g., in GSM) claimed when a session key
can be found in less than one second. This can be achieved by distributing our attack across 30 · 60 Xeon
processors, which might not be the best choice after all. Instead, it might be smarter to offload solving the
equation system to Graphics Processing Units (GPUs) or Field Programmable Gate Arrays (FPGAs), since, as
we have learned by profiling our implementation, this step is most demanding but also easy to parallelize
as was shown in previous publications [GGHM05, BMPP06].

However, a month after the publication of a pre-print of this work, an email, claiming an implementation
capable of revealing the A5-GMR-1 encryption key in real-time, was received by us. The author of this
email claims to have implemented a variant of our attack, which targets the FACCH319 channel, requires
fewer frames (but some plaintext) and allegedly uses only 8 GB of precomputed data. To the best of our
knowledge, no description of this variant nor any source code have been published yet. Nevertheless, lacking
the possibility to verify this specific implementation, it is quite reasonable to assume that incorporating more
knowledge about the different channels and the structure of plaintexts in GMR-1 is very likely to lead to a
much more efficient attack than what we have demonstrated so far.

19Data sent on the FACCH3 channel has much more redundancies added, which results in more linear equations per FACCH3
frame.

37

CHAPTER 4

SECURITY ANALYSIS OF THE GMR-2 STANDARD

This chapter documents our work on reverse engineering the cipher used in the GMR-2 satellite phone
standard from a firmware update of an actual handheld device. Furthermore, we present a practical attack
on the recovered scheme and show that it can be broken in negligible time with given plaintext.

4.1 Motivation

Since GMR-2 is the second of the two ETSI standards for satellite communications, it came into focus
after analyzing GMR-1 and due to our general interest in the security of satphone telecommunication (cf.
Section 3.1).

4.2 Related Work

In addition to the related work we have mentioned in the previous chapter (cf. Section 3.2), the analysis
of DECT, which is another ETSI standard, comes to mind. DECT is a standard for connecting cordless
telephones to a fixed telecommunications network over a short range. Cryptographic methods to ensure
privacy of the wireless link were not publicly available until reverse engineered and cryptanalyzed by Stefan
Lucks et al. in 2009 [LST+09]. While they do not describe the process of reverse engineering, they present
a very detailed analysis of the multiple algorithms and protocols involved in DECT, which are all entirely
proprietary designs.

4.3 Technical Background

In this section we shortly introduce the basic technical background which is necessary to understand our
method of reverse engineering the stream cipher used in GMR-2 from Inmarsat’s IsatPhone Pro.

4.3.1 Satphone Hardware

We now briefly introduce the general architectural structure of satellite phones and the hardware typically
found in such devices. In general, the architecture of satellite phones is similar to the architecture of cel-

39

Chapter 4 Security Analysis of the GMR-2 Standard

lular phones, as documented1 by Harald Welte. Both types of handsets have to perform a lot of real-tome
processing of speech and signal data, thus they typically ship with a Digital Signal Processor (DSP), dedi-
cated for this purpose. More relevant for our purpose are the facts that DSPs are also suitable for executing
cryptographic algorithms, and that encryption is part of the encoding process (cf. Subsection 3.3.3), which
makes the DSP’s code a prime candidate for locating the stream cipher used in GMR-2.

DSP Core

(Blackfin)

ARM Core

(ARM-926EJ-S)

System RAM

External Memory

Bus Controller

Bus Controller

Boot ROM

Figure 4.1: Essential building blocks of the “LeMans” AD6900 platform

Nevertheless, the core of a satphone is a standard microprocessor (usually an ARM-based Central Process-
ing Unit (CPU)) that serves as the central control unit within the system. This CPU initializes the DSP during
the boot process. Furthermore, both processors share parts of the main memory or other peripheral devices
to implement inter-processor communication. To understand the flow of code and data on a phone, we thus
needed to analyze the communication between the two processors.

All of the general characteristics of a satphone can be found when opening an Inmarsat IsatPhone Pro,
which (probably) runs on an Analog Devices LeMans AD6900 platform2. The core of the platform is an
ARM-926EJ-S CPU, which is supplemented by a Blackfin DSP (see Figure 4.1 for a schematic overview). We
conjecture that this platform is used, since it is indicated by text fragments found in the phone’s firmware.
In the phone, both processors connect to the same bus interface, which is attached to the system RAM, any
external memory that might be present as well as the shared peripherals (e.g., SIM card, keypad, SD/MMC
slots, etc.).

4.3.2 The Blackfin DSP

Most of our reverse engineering work involved code running on the DSP used in the Inmarsat phone, which
is why we will give some background information on this chip as well. It is not clear, which Blackfin variant

1See http://laforge.gnumonks.org/papers/gsm_phone-anatomy-latest.pdf
2See http://www.eetimes.com/General/DisplayPrintViewContent?contentItemId=4016202.

40

http://laforge.gnumonks.org/papers/gsm_phone-anatomy-latest.pdf
 http://www.eetimes.com/General/DisplayPrintViewContent?contentItemId=4016202

4.3 Technical Background

of Analog Devices’ vast palette of DSPs is exactly used in the IsatPhone Pro, we will give some general
information about the purpose and common architecture features of this class of processors.

8168 8168

40

A0

BARREL

SHIFT

A1

40

R7.H R7.L

R6.H R6.L

R5.H R5.L

R4.H R4.L

R3.H R3.L

R2.H R2.L

R1.H R1.L

R0.H R0.L

Figure 4.2: (Simplified) Data Arithmetic Unit of Blackfin DSPs

The Blackfin architecture represents a specialized 16/32-bit microprocessor, jointly developed by Intel and
Analog Devices. The basic design is now over a decade old and was presented in 2000/2001. In general, a
DSP is specifically designed for the operational needs of signal processing. Here, computing the convolution
of two time-series is a typical task for many processing methods and these require many multiply-accumulate
(MAC) operations. A MAC operation is defined as computing

a := a+ (b · c).

The Blackfin allows b and c to be of 16-bit size, while a can have up to 40 bits.
Figure 4.2 shows the “core” of a Blackfin DSP—its Data Arithmetic Unit (DAU). The two X-shaped, central

elements are 16-bit multipliers, each connected to a 40-bit Arithmetic Logic Unit (ALU) which writes to the
40-bit accumulator registers A0 (and A1 respectively). The presence of 40-bit accumulators and an equally
wide ALU represents one of the optimizations of this processor for MAC operations: although the output of
a 16-bit multiplication only has a maximum of 32 bits, having a 40-bit ALU and accumulator allows multiple
accumulation steps (i.e., additions of 32-bit values), before an overflow can occur. The accumulators can
be fed back into the ALU, which enables the DSP to perform two 16-bit MAC operations simultaneously.
Additionally, the Blackfin has four 8-bit ALUs, which are optimized for video encoding. The DSP has 16
16-bit data registers, of which two always form a pair. Additionally, the processor has registers specifically
designed for the implementation of “zero-overhead loops”, which means that the processor can execute
loops without consuming additional cycles for the loop itself. Typically, a loop would require the CPU to test
the value of the loop counter, perform a conditional branch to the top of the loop and decrement the loop
counter. However, more complex loops, i.e., loops spanning many instructions instead of just a few, are still
constructed in this manner—even on the Blackfin.

41

Chapter 4 Security Analysis of the GMR-2 Standard

1 sub_20000000 : x−r e f s 204 fe02c
2 20000000 LINK 0x18 ;
3 20000004 [−−SP] = (R7:6 , P5 : 3) ;
4 20000006 P5 = R1 ;
5 20000008 P4 = R0 ;
6 2000000a P0 . L = 0x2034 ; /∗ P0=0x00002034 ∗/

7 2000000e P0 .H = 0x2046 ; /∗ @P0(0x20462034)=hex :0 x00000001 ∗/

8 20000012 R2 . L = 0x7410 ; /∗ R2=0x00007410 ∗/

9 20000016 R2 .H = 0x2054 ; /∗ @R2(0x20547410)= s t r : ’ pDecTemp0 ’ ∗/

10 . . .
11 20000034 IF CC JUMP 0x2000015c ;
12 . . .
13 loc_2000015c : x−r e f s 20000034
14 2000015c SP += 0x24 ;
15 2000015e (R7 :6 , P5 :3) = [SP++];
16 20000160 UNLINK ;
17 20000164 RTS ;
18 . . .
19 sub_20000530 : x−r e f s 200008bc
20 . . .
21 20000538 P2 . L = 0x5470 ; /∗ P2=0x00005470 ∗/

22 2000053c P0 = 0x104 (X) ; /∗ P0=0x00000104 ∗/

23 20000540 P2 .H = 0x2000 ; /∗ @P2(0x20005470)=hex :0 x002f0000 ∗/

24 20000544 LSETUP(0x20000548 , 0x20000550) LC0 = P0 ;
25 20000548 R0 = W[P2++] (X) ;
26 2000054a P0 = R0 ;
27 2000054c R0 . L = W[I0++];
28 2000054e P0 = P1 + (P0 << 0x1) ;
29 20000550 W[P0 + 0x0] = R0 ;
30 20000552 UNLINK ;
31 20000556 RTS ;

Figure 4.3: Excerpt from the actual disassembly of the Blackfin’s firmware

Figure 4.3 shows a (slightly redacted) excerpt from the output of our disassembler. As can be seen,
the mnemonics of the Blackfin’s assembly language are quite intuitive, even sporting simple conditional
statements as indicated by the IF code word. Also, a zero-overhead loop, which is defined by the LSETUP

command, can be found at address 0x20000544.

4.3.3 Software and Operating System

The operating system running on the main CPU is a highly specialized system that is designed with respect
to the special requirements of a phone system (e.g., limited resources, reliability, real-time constraints, etc.).
We assume that what we found is a variant of the AMX 4-Thumb Kernel from Kadak Inc., which is also
referred to as “Aos-AMX Version 0.29”. Features of this Real Time Operating System (RTOS) include the
following:

42

4.4 Reverse Engineering

• Compact, ROMable real time operating system
• Rapid task context switching
• Fast interrupt response
• Nested interrupts with priority ordering
• Preemptive, priority based task scheduler
• Timing support for delays, timeouts, periodic events
• Time slicing option with adjustable slices
• Message passing with configurable message length
• Dynamic task creation and dynamic task priorities
• Protection against task priority inversion

— http://www.kadak.com/rtos/rtos.htm

On the side of the Blackfin, we found strings referring to “Aos-BF Version 2.106.1”, which is probably only
a runtime framework and no complete operating system (in the sense of the AMX Kernel).

All of the software is deployed as one large, statically linked firmware binary which contains ARM code
mixed with DSP code. Therefore, for our analysis, we were specifically interested in how the main CPU
initializes the DSP, i.e., how the DSPs firmware is extracted from the firmware binary, at which memory
address it is loaded into the DSP and how DSP and CPU communicate.

4.4 Reverse Engineering

Here, we describe the separate steps we followed to obtain a high-level description of the stream cipher
A5-GMR-2. The general observation here is that, since any phone interacting with Inmarsat’s network must
be able to encrypt and decrypt, the respective implementation can be found in the firmware of a satphone.
We describe the process of unpacking the firmware, locating the portion of code which is relevant and how
we eventually found the algorithm with the help of a custom disassembler.

4.4.1 Obtaining the DSP Firmware

Obtaining the entire firmware of the satphone was easy, it could be downloaded as a firmware-update
from Inmarsat’s website. The firmware-updates of Inmarsat’s satphones come as .fpk files in a proprietary
format. To extract the firmware of the DSP, we had to follow these steps:

1. Understand the update package and locate the actual firmware.
2. Find the initialization routine in the ARM code.
3. Mimic the initialization process in order to obtain the DSP’s code, as it is actually run by the DSP.

To understand the format, we have partially reverse engineered Inmarsat’s firmware update program with
the help of Interactive Disassembler (IDA), a general purpose disassembler which supports many binary for-
mats and processor architectures. In the process of analyzing the update functionality, we discovered that the
updater splits the original file into three files named File1.bin, File2.bin and File3.bin and writes
these to the directory for temporary files. Examining strings in these three files revealed that File2.bin is
the most interesting file, since it contained strings with ApplyCipher as substring. Furthermore, we were

43

http://www.kadak.com/rtos/rtos.htm

Chapter 4 Security Analysis of the GMR-2 Standard

able to understand that the first two files have a header of 80 bytes each, which is immediately followed by
ARM-code. Among data which we could not identify, the header includes this information:

• Address of the image, presumably in RAM.
• Size of the firmware image in bytes (i.e., file size without header).
• A string describing the current version of the firmware.

Particularly the first bit of information was very helpful, because in order to correctly resolve references
to static addresses in the code, IDA requires the correct base-address. For the file we are interested in,
we had to set the base-address to 0x0480000, after which IDA produced a nice disassembly of the ARM
firmware (which includes the DSP firmware at address 0x04a00000). The third file seems to be used in a
standardized firmware-update protocol called Device Firmware Upgrade (DFU), as indicated by its header
(and more DFU related information at the end of the file).

As stated before (cf. Subsection 4.3.1), in the tandem of DSP and CPU, the ARM processor is responsible
for starting the initialization process on the DSP. Analysis of the beginning of the DSP’s firmware found that,
after the DSP is powered up by the ARM, the DSP itself performs a “decompression” operation on its part
of the firmware. A second effect is that this process also transfers the firmware from address 0x04a0000
(which we assume is FLASH memory) to address 0x20000000 (presumably RAM). In order to do this, the
DSP reads its configuration from a table (starting at 0x04A00578) and repeatedly does one of these three
operations3:

• copy_block(srcAddr, dstAddr, nBytes)
Here, nBytes bytes are simply copied from address srcAddr to dstAddr.

• copy_block_repeatedly(srcAddr, dstAddr, nBytes, nTimes)

Here, nBytes are read from srcAddr and consecutively written for nTimes, beginning at dstAddr.
• null_block(dstAddr, nBytes)

Here, nBytes null bytes are written to dstAddr.

After reverse engineering and understanding this initialization routine, we have used a script for IDA
which evaluates the table and extracts order and parameters of the executed operations. A second program
was then used to evaluate the output of the script, reproduce this part of the initialization procedure and
consequently isolate and expand the DSP’s code from the firmware. The result is a file, representing the
DSP’s firmware in the way it is actually found in RAM after decompression.

4.4.2 Developing a Blackfin Disassembler

As stated before, at the time of our analysis (early 2011), IDA did not support the disassembly of Blackfin
code. However, what was available at that time was the GNU Toolchain4 for Blackfin, now developed in
cooperation between the open source community and Analog Devices. Part of this toolchain is objdump, a
linear disassembler for Blackfin object files in the Executable and Linking Format (ELF) format. By linear we
denote a disassembler that maps a sequence of bytes to their respective mnemonics, treating all bytes in the
sequence as code and proceeding in a linear fashion from start to beginning. However, since the firmware
does not contain only code, but also data, a non-negligible amount of the output of objdump is actually
invalid (i.e., data interpreted as code) and thus worthless.

At this point, we saw two options: the first option was extending IDA with a custom processor module
(in IDA’s scripting language) for Blackfin, thus being able to leverage all of IDA’s capabilities for navigating

3Please note that there are no actual functions with these names in the code; we break down the functionality into these three
functions for the sake of clarity.

4See http://blackfin.uclinux.org/gf/project/toolchain.

44

http://blackfin.uclinux.org/gf/project/toolchain

4.4 Reverse Engineering

in disassemblies. Alternatively, we could build our own disassembler around the already existing objdump

from the GNU Toolchain. We decided to go with the second approach, which was motivated by three facts:

1. The Application Programming Interface (API) of IDA was (at the time, i.e., mid-2011) in a confusing
state, which expressed itself in inconsistent naming conventions and a general lack of documentation.

2. The most error-prone process in the implementation is translating a sequence of bytes into their re-
spective mnemonics. This code did already exist as part of objdump, but would—potentially—have
to be re-written to be used with IDA.

3. The fact that the Blackfin firmware exhibited promising strings (i.e., ApplyCipher) led us to believe
that finding the cipher from the function referencing this string would be easy, thus the disassembler
need not be very sophisticated or complex.

The general design idea for our disassembler was using the objdump code to disassemble single bytes,
while building additional logic around it in order to reach these goals (in comparison to the unmodified,
linear disassembler):

1. Distinguish between data and code.
2. Resolve references to strings (and 32-bit values) and mark them visibly.
3. Properly annotate cross-references, i.e., resolve and mark targets and destinations of instructions that

alter the control flow in the program (see below).

In order to distinguish between data and code, the idea is to follow the control flow of the program. There
are two classes of instructions: there are instructions that do not alter the control flow and those that do
(although sometimes some conditions need to be met). In the case of the Blackfin DSP, these instructions
belong to the second class:

• JUMP addr;
Unconditional, direct jump to code at another address.

• JUMP (P0);

JUMP (P1);

Unconditional, indirect jump to address stored in P0 or P1.
• IF CC JUMP addr;

IF !CC JUMP addr;

Conditional jump to an address, iff the carry register CC is set (or not set).
• CALL addr;

Direct call of a subroutine at a specific address; program flow will resume after this instruction after
subroutine has finished.

• CALL (P0);

CALL (P1);

Indirect call of an address, which is stored in P0 or P1. Control flow will resume at call site after
returning from subroutine.

• RET;

Return to the caller of the current subroutine.

By disassembling only the portions of the firmware that are reachable from valid code, we can make sure
that—at least5—all parts of the firmware we reach are “real” code. The general strategy here is to perform
an initial discovery of potential code by doing a linear disassembly of the entire firmware, thus identifying
all CALL instructions, i.e., calls into subroutines. For each entry in the list of potential subroutines, we do

5On the other hand, there might still be code that is not directly reachable by CALL instructions, which would thus be treated as
data.

45

Chapter 4 Security Analysis of the GMR-2 Standard

a speculative, recursive disassembly, i.e., we follow the call, assume that it leads to a valid subroutine and
disassemble it. If, for a top-level CALL we have followed, the disassembler comes across invalid opcodes,
we know that the originating CALL site was invalid itself (i.e., we treated data as code, which is what
leads to calling our strategy a “speculative” disassembly) and thus discard all code with that origin. The
“recursive” part of our disassembler refers to the fact that we follow all CALL instructions in a recursive
manner: assume that the disassembler implements the routine analyze_code(addr), which starts disas-
sembling at an address and subsequently follows the control flow. Assume further that we start disassembly
at address addr1 by calling the analysis routine via analyze_code(addr1). When, in the course of the
execution of this function, another call like CALL addr2 is encountered, this function calls itself recursively
via analyze_code(addr2). When, in the course of analyzing the code at addr2, the disassembler does
not encounter any of the instructions which alter the control flow, but only a RET at the end of the subrou-
tine, analyze_code(addr2) also returns to its caller, which was analyze_code(addr1). Here, analysis
is continued at the next instruction. In summary, this is how we treat each of the control flow altering
instructions:

• Unconditional jumps.
Always and immediately continue disassembly at the new address.
• Conditional jumps.

Follow the jump once until a RET is reached. Then continue disassembly after the conditional jump.
• Calls.

Follow the call once, return to instruction after CALL when RET is encountered in subroutine.

Obviously, since execution can continue after a CALL or a conditional jump (i.e., if the condition is not met),
both are treated similarly.

While following the control flow is suitable to distinguish between code and data, it introduces a problem:
it becomes necessary to detect infinite loops, where the disassembler follows the same sequence of instruc-
tions over and over. Constructions like this are often the result of concurrent computing and can vary in
complexity: in the process of developing the disassembler, we have found quasi-empty loops (i.e., a JUMP

instruction jumping to its own address) but also very complex constructions with conditional jumps. In
order to detect these loops, we have implemented a simple circular buffer, which stores the last N addresses
we have disassembled. If we find a sequence of addresses twice in this buffer (both being adjacent to each
other), we assume that we are in an infinite loop and stop disassembly of the respective subroutine.

1 switch (value)
2 {

3 case 0: . . .
4 case 1: . . .
5 case 2: . . .
6 case 3: . . .
7 }

Figure 4.4: A switch/case statement in C code

Annotating references to data and code is straightforward, while resolving indirect jumps involves a bit
more of processing. Typically, indirect jumps are used to implement switch/case statements, which are
quite common across a variety of programming languages; Figure 4.4 shows a variant implemented in the
C programming language. The compiler translates such a construct into an indirect jump, for which the
target address is found in a table of 32-bit addresses that is indexed by value. Figure 4.5 shows some

46

4.4 Reverse Engineering

1 . . .
2 2049e77c P0 = R0 ;
3 2049e77e CC = R0 < 0x0 ;
4 2049e780 [FP −0x10] = R0 ;
5 2049e782 IF CC JUMP 0x2049e9d8;
6 2049e784 CC = R0 <= 0x3 ;
7 2049e786 IF !CC JUMP 0x2049e9d8;
8 2049e788 P1 . L = 0x5a4 ; /∗ P1=0x000005a4 ∗/

9 2049e78c P1 .H = 0x2054 ; /∗ @P1(0x205405a4)=hex :0 x2049e796 ∗/

10 2049e790 P0 = P1 + (P0 << 0x2) ;
11 2049e792 P0 = [P0 + 0x0] ;
12 2049e794 JUMP (P0) ; /∗ s w i t ch ∗/

13 loc_2049e796 : x−r e f s 2049e794 ; /∗ s w i t ch ca s e 0 ∗/

14 2049e796 P0 = [FP −0x28] ;
15 . . .
16 2054059c 3e ea 49 20 ec e9 49 20 96 e7 49 20 c4 e8 49 20 >. I . . I . . I . . I
17 205405ac 66 e8 49 20 1a e8 49 20 02 be 4d 20 fa bd 4d 20 f . I . . I . .M . .M
18 . . .

Figure 4.5: A switch/case statement in Blackfin assembler

Blackfin code implementing a switch statement with four different cases, i.e., what is represented by the
C code above. It can be observed that the address for the JUMP instruction is computed from P1 and P0

(line 10). Here, P1 points (lines 8, 9) to the beginning of a table (lines 16, 17) while it is verified that
0 ≤ P0 ≤ 3 (lines 3, 6). A simple and efficient heuristic to detect switch/case implementations is to look
for a construction such as found in line 10 and 11 (might also occur with register P1). Starting from there
and following the control flow backwards quickly discovers the remaining information, i.e., the start of the
table and the range of the other register. Given this information, all jump targets can be resolved from the
addresses stored in the table and are annotated as shown in line 13.

4.4.3 Finding the Cipher

Our custom disassembler is able to resolve cross-references, which eases understanding of the obtained
disassembly significantly. Still, applying the disassembler on the reconstructed DSP firmware yields more
than 300,000 lines of assembler code and we decided that purely manual analysis is too inefficient. Hence,
we again applied the same heuristics we successfully used to find the cipher in GMR-1, i.e., we searched
for subroutines holding a significant percentage of mathematical operations one would expect from an
encryption algorithm [DHW+12]. Unfortunately, this approach did not reveal any code regions that could
be attributed to LFSR-based keystream generation.

Hence, we decided to follow another approach. The Blackfin code contains a number of ASSERT()
statements which include the name of the source files of the respective code. This allowed us to directly
infer preliminary function names and to derive the purpose of several functions. More specifically, we
identified one subroutine that referenced a source file with the name ..\..\modem\internal\Gmr2p_

modem_ApplyCipher.c and named it ApplyCipher(). We found that the function does what the name
implies, it takes two 120-bit inputs and simply XORs them. We assumed that one of these parameters is
the output of a stream cipher because the length matches the expected frame size of 120 bits according
to the GMR-2 specification [ETS01b]. Starting from this subroutine, we identified the code for generating
the keystream by applying a number of different techniques that we explain in the following. All of these

47

Chapter 4 Security Analysis of the GMR-2 Standard

techniques aim at narrowing down the potentially relevant code base in the disassembly. This was an
essential and inevitable step in the analysis process since the stream cipher code is located in an entirely
different part within the DSP code than ApplyCipher().

First, we created the reverse call graph of the ApplyCipher() function, i.e., we recursively identified
all call sites of this subroutine. Each call site is represented as a node in the graph and an edge from
one node to another node indicates that the destination node’s subroutine is called from the source node’s
subroutine. This process is repeated until there is no caller left. It turned out that this graph had ten topmost
functions, which are not called directly because they were thread functions. We started by manually tracking
the data flow of the keystream parameter, starting at ApplyCipher(), following the reverse call graph.
Unfortunately, this did not turn out to be promising since a myriad of additional functions are being called
in between the topmost functions in the graph and ApplyCipher(). However, in each of the topmost
functions, we were able to identify a subroutine (denoted by us as CreateChannelInstance()) that
allocates the memory region of the keystream buffer before initializing it with zeros. What was missing was
the piece of code that fills the buffer.

thr_Gmr2pBclTchDataRx thr_Gmr2pBclTchDataRx

WaitTchReq_AT_Gmr2pBclTchDataRx WiosAllocCnf_AT_Gmr2pBclTchRx

thr_Gmr2pBclRHmsch thr_Gmr2pBclSch

thr_Gmr2pEngModeBclTxCW

thr_Gmr2pBclRach

thr_Gmr2pEngModeBclTxOnOff

thr_Gmr2pEngModeBclTxRx thr_Gmr2pBclTchTxThread

Gmr2pBclTchTx

sub_2050d9de

sub_204a4358

Gmr2p_modem_ChanEst_OQPSK_NB Gmr2p_modem_Mod_GMSK_NB

sub_2050dae4

Gmr2p_L1ShellMod

Gmr2p_modem_ApplyCipher

thr_Gmr2p_modem_ChanEst_OQPSK_NB2

Figure 4.6: Reverse call graph of ApplyCipher() (the ten gray nodes are root nodes)

An analysis of the control flow graphs of the ten topmost routines in the reverse callgraph suggests that
each routine implements a state machine using one switch/case statement. We generated the forward

call graph for each case in the switch statement, where, in analogy to the reverse call graph, an edge
from one node to another indicates that the source node’s subroutine calls the destination node’s subrou-
tine. Given this new graph, we were able to derive which functions are called in each corresponding state.
Most notably, this allows us to identify the points at which the keystream buffer is created (by calling
CreateChannelInstance()) and the encryption of the plain text happens (by calling ApplyCipher()).
The code responsible for generating the keystream naturally has to be called in between these two points.

The remaining code (approximately 140 subroutines) was still too large for a manual analysis. In order to
further narrow down the relevant code parts, we created the forward call graphs of all ten thread routines
and computed the intersection of all the nodes in the graphs. The idea behind this approach is that in
every case the stream cipher has to be called eventually, regardless of the actual purpose of the thread.
The intersection greatly reduces the candidate set of code regions from about 140 subroutines to only 13
functions shared by all threads (not including further nested subroutine calls). In the last step, we analyzed
these remaining functions manually. At first, this analysis revealed the subroutine, which encodes the TDMA-
frame counters into a 22-bit frame number. Shortly after this function, the actual cipher code is called. The
algorithm itself, as explained in the next section, is completely dissimilar to A5/2, which also explains why
we were not able to spot the cipher with the same methods as in the analysis of GMR-1.

48

4.5 The A5-GMR-2 Stream Cipher

4.5 The A5-GMR-2 Stream Cipher

After having obtained the cipher’s assembler code, we had to find a more abstract description in order to
enhance intuitive understanding of its way of functioning. We arbitrarily chose to split the cipher into several
distinct components which emerged after examining its functionality. Note that, for the sake of symmetry,
we denote the cipher as A5-GMR-2, although it shows no resemblance to any of the A5-type ciphers and is
called GMR-2-A5 in the respective specification [ETS01a].

4.5.1 Structure

The cipher uses a 64-bit encryption-key and operates on bytes. When the cipher is clocked, it generates
one byte of keystream, which we denote by Zl , where l represents the number of clockings. The cipher

3 8

4

8

1

6

6

64

Figure 4.7: The A5-GMR-2 cipher

exhibits an eight byte state register S = (S0,S1, ...,S7)28 and three major components we call F ,G and H .
Additionally, there is a 1-bit register T that outputs the so-called “toggle-bit” and a 3-bit register C that
implements a counter. Figure 4.7 provides a schematic overview of the cipher structure. In the following,
we detail the inner workings of each of the three major components.

We begin with the F -component, which is certainly the most interesting part of this cipher—Figure 4.8a
shows its internal structure. On the left we see another 64-bit register split into eight bytes (K0, K1, ..., K7)28 .
The register is read from two sides, on the lower side one byte is extracted according to the value of c,
i.e., the output of the lower multiplexer is Kc. The upper multiplexer outputs another byte, but this one is

8

8

8

1

4

4

3

3

64

3

8

4

(a) F -component

4

4

4

4

4

4

8

8

8

82

2

6

6

4

4

4

4

4

4

(b) G -component

6

6

1

4

4

8

(c)H -component

Figure 4.8: Components of the A5-GMR-1 cipher

49

Chapter 4 Security Analysis of the GMR-2 Standard

determined by a 4-bit value, which we will call α. On the right side, two smaller sub-components

T1 : {0,1}4 7→{0,1}3

T2 : {0,1}3 7→{0,1}3

are implemented via table-lookups (see Table 4.1). Also, a 4-bit and an 8-bit XOR are used. The input of T1

x T1(x) T2(x) T2(T1(x))

(0,0,0,0)2 2 4 6
(0,0,0,1)2 5 5 3
(0,0,1,0)2 0 6 4 *
(0,0,1,1)2 6 7 2
(0,1,0,0)2 3 4 7
(0,1,0,1)2 7 3 1
(0,1,1,0)2 4 2 4 *
(0,1,1,1)2 1 1 5
(1,0,0,0)2 3 - 7
(1,0,0,1)2 0 - 4 *
(1,0,1,0)2 6 - 2
(1,0,1,1)2 1 - 5
(1,1,0,0)2 5 - 3
(1,1,0,1)2 7 - 1
(1,1,1,0)2 4 - 4 *
(1,1,1,1)2 2 - 6

Table 4.1: T1 and T2 as lookup-table

is determined by p, Kc and the toggle-bit t. Note that we use p = Zl−1 as a shorthand to denote one byte
of keystream that was already generated. We model the behavior of the small vertical multiplexer by N (·),
which we define as

N : {0,1}× {0,1}8 7→{0,1}4

(t, x〈7〉, x〈6〉, ..., x〈0〉)2 7→

(

(x〈3〉, x〈2〉, x〈1〉, x〈0〉)2 if t = 0,

(x〈7〉, x〈6〉, x〈5〉, x〈4〉)2 if t = 1.

With the help of N , which returns either the higher or lower nibble of its second input, the following holds
for the output of the mentioned multiplexer

α =N (t, Kc ⊕ p) =N (c mod 2, Kc ⊕ p).

The output of the upper multiplexer is rotated to the right by as many positions as indicated by the output
of T2, therefore the 8-bit output O0 and the 4-bit value O1 are of the following form,

O0 =
�

KT1(α)
≫ T2
�
T1 (α)
��

28 and

O1 =
�

Kc〈7〉
⊕ p〈7〉 ⊕ Kc〈3〉

⊕ p〈3〉, Kc〈6〉
⊕ p〈6〉 ⊕ Kc〈2〉

⊕ p〈2〉, Kc〈5〉
⊕ p〈5〉 ⊕ Kc〈1〉

⊕ p〈1〉, Kc〈4〉
⊕ p〈4〉 ⊕ Kc〈0〉

⊕ p〈0〉

�

2
.

The G -component gets the outputs of the F -component as inputs, i.e., I0 = O0, I1 = O1. Additionally, the
one byte S7 of the state is used as input. As can be seen in Figure 4.8b, three sub-components, denoted

50

4.5 The A5-GMR-2 Stream Cipher

as B1,B2,B3, are employed—again, they are implemented in the form of lookup-tables. Each of these
components works on 4-bit inputs and equally returns 4-bit. After analyzing the tables, we found that all
three simply implement linear boolean arithmetic, i.e.,

B1 : {0,1}4 7→ {0,1}4
�

x〈3〉, x〈2〉, x〈1〉, x〈0〉
�

2
7→
�

x〈3〉 ⊕ x〈0〉, x〈3〉 ⊕ x〈2〉⊕ x〈0〉, x〈3〉, x〈1〉
�

2
,

B2 : {0,1}4 7→ {0,1}4
�

x〈3〉, x〈2〉, x〈1〉, x〈0〉
�

2
7→
�

x〈1〉, x〈3〉, x〈0〉, x〈2〉
�

2
,

B3 : {0,1}4 7→ {0,1}4
�

x〈3〉, x〈2〉, x〈1〉, x〈0〉
�

2
7→
�

x〈2〉, x〈0〉, x〈3〉 ⊕ x〈1〉⊕ x〈0〉, x〈3〉⊕ x〈0〉
�

2
.

Since these sub-components and the modulo-2 addition are linear and all other operations on single bits
just amount to permutations, the G -component is entirely linear. Therefore, we can write the 6-bit outputs
O′0,O′1 as linear functions of the inputs I0, I1 and S7, i.e.,

O′0 =
�

I0〈7〉 ⊕ I0〈4〉 ⊕ S7〈5〉 , I0〈7〉 ⊕ I0〈6〉 ⊕ I0〈4〉 ⊕ S7〈7〉 , I0〈7〉 ⊕ S7〈4〉 , I0〈5〉 ⊕ S7〈6〉 , I1〈3〉 ⊕ I1〈1〉 ⊕ I1〈0〉 , I1〈3〉 ⊕ I1〈0〉

�

2
and

O′1 =
�

I0〈3〉 ⊕ I0〈0〉 ⊕ S7〈1〉 , I0〈3〉 ⊕ I0〈2〉 ⊕ I0〈0〉 ⊕ S7〈3〉 , I0〈3〉 ⊕ S7〈0〉 , I0〈1〉 ⊕ S7〈2〉 , I1〈2〉 , I1〈0〉

�

2
.

Finally, the H -component gets I ′0 = O′0 and I ′1 = O′1 as input and constitutes the non-linear “filter” of the
cipher (see Figure 4.8c). Here, two new sub-components

S2 : {0,1}6 7→ {0,1}4

S6 : {0,1}6 7→ {0,1}4

are used and implemented via lookup-tables. Interestingly, these tables were taken from the DES, i.e., S2 is
the second S-box and S6 represents the sixth S-box of DES. However, in this cipher, the S-boxes have been
reordered to account for the different addressing, i.e., the four most-significant bits of the inputs to S2 and
S6 select the S-box-column, the two least-significant bits select the row. Note that this is crucial for the
security of the cipher. The inputs to the S-boxes are swapped with the help of two multiplexers, depending
on the value of t. Given the inputs I ′0, I ′1 and t we can express the l-th byte of keystream as

Zl =

(

(S2(I
′
1),S6(I

′
0))24 if t = 0,

(S2(I
′
0),S6(I

′
1))24 if t = 1.

4.5.2 Mode of Operation

Next we describe the mode of operation. When the cipher is clocked for the l-th time, the following happens:

1. Based on the current state of the S-, C- and T -register, the cipher generates one byte Zl of keystream.
2. The T -register is toggled, i.e., if it was 1 previously, it is set to 0 and vice versa.
3. The C-register is incremented by one, when 8 is reached the register is reset to 0.
4. The S-register is shifted by 8 bits to the right, i.e., S7 := S6,S6 := S5 etc. The previous value of S7 is

fed into the G -component, the subsequent output Zl of H is written back to S0, i.e., S0 := Zl . This
value is also passed to the F -component as input for the next iteration.

51

Chapter 4 Security Analysis of the GMR-2 Standard

The cipher is operated in two modes, initialization and generation. In the initialization phase, the follow-
ing steps are performed:

1. The T - and C-register are set to 0.
2. The 64-bit encryption-key is written into the K-register in the F -component.
3. The state-register S is initialized with the 22-bit frame number N , this procedure is dependent on the

“direction bit” but not detailed here as it is irrelevant for the remainder.
After C , T and S have been initialized, the cipher is clocked eight times, but the resulting keystream is
discarded.

After initialization is done, the cipher is clocked to generate and output actual keystream bytes. By Z
(N)

l

we denote the l-th (0 ≤ l ≤ 14) byte of keystream generated after initialization (and warm-up) with frame
number N . In GMR-2, the frame number is always incremented after 15 bytes of keystream, which forces
a re-initialization of the cipher. Therefore, the keystream that is actually used is the concatenation of these
15-byte blocks. We denote continuous keystream for frames N , N + 1, ... by Z , with

Z =
�

Z
(N)
0 , ..., Z

(N)
14 , Z

(N+1)
0 , ..., Z

(N+1)
14 , Z

(N+2)
0 , ...
�

28
.

4.6 Cryptanalysis

In this section, we present a known-plaintext attack that is based on several observations that can be made
when carefully examining the F -component (and the starred rows in Table 4.1):

1. If α ∈ {(0,0,1,0)2, (1,0,0,1)2} then T1(α) = 0 and T2(T1(α)) = 4, thus O0 = (N (0, K0),N (1, K0))24 .
2. If α ∈ {(0,1,1,0)2, (1,1,1,0)2} then T1(α) = 4 and T2(T1(α)) = 4, thus O0 = (N (0, K4),N (1, K4))24 .
3. If T1(α) = c, both multiplexers select the same key byte. We call this a read-collision in Kc.

In the following, we describe how to obtain K0 and K4 with high probability, which is then leveraged in a
second step in order to guess the remaining 48 bits of K in an efficient way.

The key idea to derive K0 is to examine keystream bytes (Zi, Zi−1, Zi−8)28 with i ∈ {8,23,38, ...} in order
to detect when a read-collision in K0 has happened during the generation of Zi . Please note that due to our
choice of i this

Z8 = Z
(N)
8 , Z23 = Z

(N+1)
8 , Z38 = Z

(N+2)
8 , ...

holds, i.e., for each i we already know that the lower multiplexer has selected K0. In general, if the desired
read-collision has happened in the F -component, the outputs of the F -component are

O0 =
�

p〈3〉 ⊕α〈3〉, p〈2〉 ⊕α〈2〉, p〈1〉 ⊕α〈1〉, p〈0〉 ⊕α〈0〉, K0〈7〉 , K0〈6〉 , K0〈5〉 , K0〈4〉

�

2
and

O1 =
�

K0〈7〉 ⊕ p〈7〉 ⊕α〈3〉, K0〈6〉 ⊕ p〈6〉 ⊕α〈2〉, K0〈5〉 ⊕ p〈5〉 ⊕α〈1〉, K0〈4〉 ⊕ p〈4〉 ⊕α〈0〉

�

2
,

and the subsequent outputs of G are

O′0 = (p〈3〉 ⊕α〈3〉 ⊕ p〈0〉 ⊕α〈0〉 ⊕ S7〈5〉 , p〈3〉 ⊕α〈3〉 ⊕ p〈2〉 ⊕α〈2〉 ⊕ p〈0〉 ⊕α〈0〉 ⊕ S7〈7〉 , p〈3〉 ⊕α〈3〉 ⊕ S7〈4〉 , p〈1〉 ⊕α〈1〉 ⊕ S7〈6〉 ,

K0〈7〉 ⊕ p〈7〉 ⊕α〈3〉 ⊕ K0〈5〉 ⊕ p〈5〉 ⊕α〈1〉 ⊕ K0〈4〉 ⊕ p〈4〉 ⊕α〈0〉, K0〈7〉 ⊕ p〈7〉 ⊕α〈3〉 ⊕ K0〈4〉 ⊕ p〈4〉 ⊕α〈0〉)2 and

O′1 = (K0〈7〉 ⊕ K0〈4〉 ⊕ S7〈1〉 , K0〈7〉 ⊕ K0〈6〉 ⊕ K0〈4〉 ⊕ S7〈3〉 , K0〈7〉 ⊕ S7〈0〉 , K0〈5〉 ⊕ S7〈2〉 , K0〈6〉 ⊕ p〈6〉 ⊕α〈2〉, K0〈4〉 ⊕ p〈4〉 ⊕α〈0〉)2.

Considering theH -component, we also know that

Zi =
�

S2

�

O′1

�

,S6

�

O′0

��

24

52

4.6 Cryptanalysis

holds.
In order to determine K0, we examine the inputs and outputs of S6 and S2 in theH -component, starting

with S6. Due to the reordering of the DES S-boxes, the column of S6 is selected by the four most-significant
bits of O′0. If we assume a collision in K0 has happened while generating Zi, we can compute these most-
significant bits due to the fact that S7 = Zi−8 and p = Zi−1 are also known for all of our choices of i. If, for
α ∈ {(0,0,1,0)2, (1,0,0,1)2} the lower nibble of Zi is found in the row with index β , a collision may indeed
have happened and the lower two bits of O′0 must be (β〈1〉,β〈0〉)2, which implies

K0〈7〉 ⊕ K0〈5〉 ⊕ K0〈4〉 = β〈1〉⊕ p〈7〉 ⊕α〈3〉 ⊕ p〈5〉 ⊕α〈1〉 ⊕ p〈4〉 ⊕α〈0〉,

K0〈7〉 ⊕ K0〈4〉 = β〈0〉⊕ p〈7〉 ⊕α〈3〉 ⊕ p〈4〉 ⊕α〈0〉.

Here we gain information about the bits of K0; K0〈5〉 can even be computed. We can then use the output of
S2 to verify whether a collision has happened for the particular α we used above. Due to the structure of
the S-box, there are only four 6-bit inputs γ with

S2(γ) =
�

Zi〈7〉
, Zi〈6〉

, Zi〈5〉
, Zi〈4〉

�

2
.

Due to our partial knowledge about
�

K0〈4〉 , K0〈5〉 , K0〈7〉

�

2
we can test for each γ whether the following rela-

tions hold:

γ〈5〉
?
=β〈0〉⊕ p〈7〉 ⊕α〈3〉 ⊕ p〈4〉 ⊕α〈0〉 ⊕ S7〈1〉,

γ〈4〉 ⊕ γ〈1〉
?
=β〈0〉⊕ p〈7〉 ⊕α〈3〉 ⊕ p〈4〉 ⊕α〈0〉 ⊕ S7〈3〉 ⊕ p〈6〉 ⊕α〈2〉,

γ〈3〉 ⊕ γ〈0〉
?
=β〈0〉⊕ p〈7〉 ⊕α〈3〉 ⊕ S7〈0〉 ,

γ〈2〉 ⊕ γ〈5〉
?
=β〈1〉⊕ p〈7〉 ⊕α〈3〉 ⊕ p〈5〉 ⊕α〈1〉 ⊕ p〈4〉 ⊕α〈0〉 ⊕ S7〈1〉 ⊕ S7〈2〉 .

If all of these relations hold for one γ, we can be sure with sufficiently high probability that a read-collision
has indeed happened. A probable hypothesis for K0 is now given by

γ〈3〉 ⊕ S7〈0〉 ||γ〈1〉⊕ p〈6〉 ⊕α〈2〉||γ〈2〉⊕ S7〈2〉 ||γ〈0〉⊕ p〈4〉 ⊕α〈0〉||p〈3〉⊕α〈3〉||p〈2〉⊕α〈2〉||p〈1〉 ⊕α〈1〉||p〈0〉 ⊕α〈0〉.

Our method detects all read-collisions, but there may also be false positives, therefore the process described
above must be iterated for a few times for different portions of the keystream. Typically, over time, one or
two hypotheses occur more often than others and distinguish themselves quite fast from the rest. Experi-
ments show that about a dozen key-frames are usually enough so that the correct key byte is among the first
two hypotheses. The principle we outlined above not only works for K0, it also allows to recover the value
of K4 when α ∈ {(0,1,1,0)2, (1,1,1,0)2}, i ∈ {12+ 15x |x ∈ N} are chosen appropriately.

In the following we assume that we have obtained a set of hypotheses for K0—we might also have K4, but
this improves the efficiency of the remainder of the attack only slightly. Based on these hypotheses, starting
with the most plausible one, we can brute-force the remaining key bytes separately. Please note that the
following process will only produce the correct key, if our hypothesis for K0 was correct. To obtain K1, ..., K7,
we examine a few keystream-bytes for a second time, while focusing on the F -component. For each K j

with j ∈ {0,1, ..., 7} for which we already have a hypothesis, we can use the corresponding key-stream bytes
�

Zi+ j , Zi+ j−1, Zi+ j−8

�

28 with i ∈ {8+ 15x |x ∈ N} to compute

α =N (j mod 2, K j ⊕ Zi+ j−1).

53

Chapter 4 Security Analysis of the GMR-2 Standard

If we do not already have a plausible hypothesis for Kk with k = T1(α), we can simply try out all possible
values δ ∈ {0,1, ..., 255} and compute the output of the cipher. If we find for one value that the output
equals Zi+ j we keep δ as hypothesis for Kk. This can be repeated for a few different i until a hypothesis for
the full key has been recovered. Since the validity of the full hypothesis solely depends on the correctness
of K0, we must verify each key candidate by generating and comparing keystream.

The overall complexity of this attack depends on how many hypotheses for K0 are used to derive the
remaining key. Given 15-20 key-frames, the correct byte for K0 is usually ranked as best hypothesis so
deriving the complete key means testing

(7 · 28)/2≈ 210

single byte hypotheses for the missing bytes (on average). Clearly, a keystream/time trade-off is possible:
the more key-frames are available to test hypotheses for K0, the more the right hypothesis distinguishes
itself from all others. As a matter of fact, the most extreme trade-off is simply trying all 28 possible values
for K0 (without even ranking them), which reduces the required amount of known keystream to about
400–500 bits but increases the computational complexity to

(7 · 28 · 28)/2≈ 218

guesses on average.

4.7 Discussion and Future Work

The effort to find the cipher in the firmware was quite considerable. It started with understanding propri-
etary hardware, software and firmware formats, went over developing a “poor man’s version” of IDA for the
Blackfin DSP and culminated in locating a fraction of code within a 300 000 line text file. However, without
much effort on the side of Inmarsat, the reverse engineering process could have been considerably harder:

1. Due to the fact that the firmware was available online, the reverse engineering process involved only
software. Obtaining the firmware from an actual device would have added the need for expertise in
the area of hardware and possibly hardware reverse engineering.

2. Although our initial assumption that the code referring to ApplyCipher implements the cipher was
wrong, leaving assertions in the binary provided unnecessary clues. Removing these strings would
have been easy enough for Inmarsat, while leaving us with no way to start our analysis of the firmware.

We have successfully recovered the stream cipher used in the GMR-2 network and constructed a very
efficient known-plaintext attack on A5-GMR-2. To analyze the availability of known plaintext, and make our
results more practical, we would need access to live data from the Inmarsat network. However, there are
currently no initiatives similar to OsmocomGMR (which targets GMR-1 only) thus obtaining data requires
implementing the modulation schemes (for instance as part of Osmocom). However, a recent publication
at a conference in South America [OM12], indicates that it is possible to extract live data from Inmarsat’s
network. The authors describe how they have patched the firmware of a satphone in order to be able to
read out internal buffers with the help of a serial console. To us, it seems entirely possible that parts of the
encrypted data in GMR-2 are predictable, since similar behavior was observed in the case of GMR-1.

54

CHAPTER 5

SECURITY ANALYSIS OF THE SIMONSVOSS 3060 LOCKING SYSTEM

This chapter presents our work on the cryptanalysis of a proprietary authentication scheme, used in the
second generation of the SimonsVoss digital locking system.

5.1 Motivation

In the world of access control by electronic means, various manufacturers have been inventing their own
cryptographic primitives and protocols. Often, the resulting designs are driven by requirements for low
cost and overall footprint. In order to further improve security, manufacturers regularly choose to resort to
obscurity and not reveal the results of their creativity to an educated audience. The past decade has shown
that the vast majority of these schemes is flawed and that once the ciphers have been reverse engineered
and become public, they can be broken with low to modest efforts.

The system we describe and analyze in this chapter was manufactured by SimonsVoss Technologies AG.
SimonsVoss is a market leader for electronic locking and access control systems. According to recent informa-
tion1, the company installed its one millionth digital locking cylinder in April 2012 and has sold more than
three million corresponding transponders. The list of customers and objects secured with this technology in
Europe, USA, and Asia, as listed on the official website2, is very impressive: it includes residential buildings,
tourist apartments, hospitals, universities, embassies, major banks, airports, buildings of the German armed
forces and the US army, factory sites of well-known brands, police stations, stadiums, town halls, prisons
and many others.

Motivated by the fact that a system manufactured by SimonsVoss was recently installed in buildings of the
Ruhr-University Bochum, we set out to reverse engineer and analyze the employed authentication scheme.
After all, it was not only a distant academic interest in the provided security guarantees (motivated by
widespread adoption of this technology), but also a personal quest to understand the safety of one’s own
belongings.

1See http://www.simons-voss.us/Record-sales-in-2011.1112.0.html?&L=6
2See http://www.simons-voss.com/References.1163.0.html?&L=1

55

http://www.simons-voss.us/Record-sales-in-2011.1112.0.html?&L=6
http://www.simons-voss.com/References.1163.0.html?&L=1

Chapter 5 Security Analysis of the SimonsVoss 3060 Locking System

5.2 Related Work

One of the first examples of a proprietary cryptographic system in the context of this chapter is the DST40
cipher. It was used in Texas Instrument’s Digital Signature Transponder (DST) which has been reverse
engineered [BGS+05] in 2005: knowing at least two challenge/response pairs, the 40-bit secret key of a
corresponding transponder can be revealed by means of a brute-force attack in less than one day. Likewise,
following the reverse engineering of NXP’s Mifare Classic cards [NESP08] through analyzing the silicon
die, the used Crypto1 cipher was found to be weak, relying on a state of only 48 bits. Further mathemat-
ical weaknesses of the cipher and implementations flaws, e. g., a weak random number generator, enable
to reveal all secret keys and practically circumvent the protection mechanisms with a card-only attack in
minutes [GvRVWS09, Cou09].

The Hitag 2 transponders of the same manufacturer—widely used for car immobilizers and Remote Key-
less Entry (RKE) systems—were found to be flawed after the cipher became public [CONQ09]. Based on the
latest results [VGB12], their secret keys can be extracted in six minutes. Further insecure products for ac-
cess control include HID Global iClass and Legic Prime cards, both based on highly ineffective cryptographic
measures [GdKGVM12, PN09].

5.3 Technical Background

Here we will shortly introduce the elements commonly found in an installation of the SimonsVoss 3060
locking system. Since this entire chapter focuses on the cryptanalysis of the system, many of the low level
details are left out. They can be found in our publication [SDK+13].

(a) Transponder 3064 (b) Door lock cylinder 3061 (c) WaveNet node 3065

Figure 5.1: Components of the SimonsVoss 3060 digital locking system

The visible part of the digital locking system 3060 installed in a building of the Ruhr-University Bochum
consists of three parts, see also Figure 5.1.

1. Transponder 3064.

Transponders serve as replacements for traditional keys and have only one central button, which
allows the transponder to start authentication with a nearby door lock.

2. Lock 3061.

RF-enabled locking cylinders 3061 are mounted on doors. When authentication with a transponder
was successful, the door cylinder beeps twice, indicating that the lock can be opened or closed during
the next few seconds (with manual force, by turning a knob that is attached to the cylinder).

56

5.4 Reverse Engineering

3. WaveNet node 3065.
Several locks are commonly assigned to so called WaveNet nodes, which allow communication be-
tween a lock and the central backend system.

The widespread digital locking system 3060 is also termed “Generation 2” or “G2-based” system by the
manufacturer. It supports up to 64,000 digital locking cylinders of type 3061 per installation, up to 64,000
transponders 3064 per lock, and the storage of up to 1,000 access instances on the transponder.

Transponders and locks communicate on a wireless link at 25 KHz and use a proprietary protocol, as well
as undisclosed authentication primitives. It is this link between transponders and doors that we analyze
here. Due to the low frequency and minimal output power of the transponders, this wireless connection
works only when lock and transponder are in close proximity (i.e., for distances of up to a few centimeters).

In the “online” version of the 3060 system, locks can have a permanent connection to a central server
through multiple WaveNet nodes at 868 MHz. The (successful or unsuccessful) opening attempt of any
transponder at any door lock in the system can be monitored and stored in logfiles. Additionally, this
feature allows to maintain and configure locks individually from a central location, which is important for
large scale installations. Please note that this link is not considered in this chapter.

5.4 Reverse Engineering

The protocol responsible for authenticating locks and transponders, as well as the cryptographic primitives,
were reverse engineered from actual hardware by Daehyun Strobel, Falk Schellenberg and David Oswald
(all members of the Chair for Embedded Security).

In order to obtain the full authentication protocol, the Integrated Circuit (IC) of a transponder and a lock
was opened with fuming acid. In both cases, a fuse-bit had to be erased with UV-C light, which then enabled
reading out the respective firmwares. Disassembly of the firmware with IDA Pro allowed to understand the
protocol, as well as the involved cryptographic primitives and constructions.

More details on the actual process and the involved tools can be found in our joint publication [SDK+13]
and the respective, upcoming Ph.D. theses.

5.5 The G2 Authentication System

In this section we present the results of reverse engineering the G2 authentication system. We present
the protocol used for mutual authentication, as well as the primitives used in this protocol. Please note
that some facts have been left undisclosed, to enable SimonsVoss to respond to the attacks we present in
Section 5.6.

5.5.1 Keys & Protocol

In the following, we present the essential results of reverse engineering the software running on the
transponder and the lock. We focus on the keys, protocol, and the cryptographic primitives used to mu-
tually authenticate transponders and locks.

For a successful execution of the authentication protocol, transponder and lock must be in possession of
a shared secret. For this purpose, each transponder has a (unique) 128-bit long-term secret KT ∈ {0,1}128.
On the other hand, each lock stores a set of four 128-bit keys that are identical for every lock in the entire

57

Chapter 5 Security Analysis of the SimonsVoss 3060 Locking System

installation. In the following, we refer to the set of the keys as the system key:

KL =
�

KL0
, KL1

, KL2
, KL3

�

2128 with KLi
∈ {0,1}128 for all 0≤ i ≤ 3.

Based on this key, the lock can derive any transponder key, as will be explained in the course of the protocol.
The system uses an 11-step challenge-response protocol to achieve mutual authentication between transpon-

der and lock. A protocol run is initiated by the transponder when the central button is pressed in proximity
of a lock. In the course of this authentication step, a multitude of messages is exchanged, see Figure 5.2.

Transponder Lock

(has KT) (has KL)
Preamble

−−−−−−−−−−−−−−→

ID IL
←−−−−−−−−−−−−−−

ID IT , Subkey i
−−−−−−−−−−−−−−→

Challenge C
←−−−−−−−−−−−−−−

Authentication data D
−−−−−−−−−−−−−−−→

... KT =K (KLi
; IT , D)

R′ =R(KT ; C , IT , ID, D)
Response R′

〈0..31〉
−−−−−−−−−−−−−−→ R=R(KT ; C , IT , ID, D)

Abort if R′
〈0..31〉 6= R〈0..31〉

Abort if R′
〈32..63〉 6= R〈32..63〉

Response R〈32..63〉
←−−−−−−−−−−−−−−

...

Figure 5.2: Protocol for mutual authentication between transponder 3064 and cylinder 3061

Here we only focus on a subset of the messages that we identified to be relevant for our security analysis.
Please also note that the descriptions of the respective functions used in the protocol follow after this section.
By observing several protocol runs, we have identified these messages:

IL Each lock has a 24-bit ID that is transmitted to the transponder.
IT Each transponder has a 32-bit ID that is transmitted to the door.
C After the ID exchange, the lock sends an 88-bit challenge C to the transponder.
D The transponder sends 80 bits of authentication data to the lock. This includes the result of its

ID verification and transponder-specific data.
In the first four steps of the protocol, most of the messages are fixed for a transponder/lock combination.
Only C (and conversely the responses R′

〈0..31〉 and R〈32..63〉) change between protocol runs—and of this 88-
bit value, only 40 bits are actually random. The remaining bits are either fixed or change infrequently. In
answer to such a challenge, both transponder and lock derive the same 64-bit response R using the data
exchanged in previous messages and the 128-bit long-term secret KT of the transponder. We denote the
function to compute the response as R , with

R= R〈0..31〉||R〈32..63〉 =R(KT ; C , IT , ID, D).

58

5.5 The G2 Authentication System

The main part of the authentication is then accomplished by exchanging the following two messages:
R′
〈0..32〉 The transponder sends the first 32-bit half of R′ as the first response to the lock.

R〈32..63〉 If R〈0..31〉 matches the first half of R′ computed by the lock, it sends the second 32-bit half of R to
the transponder.

As each party computes the full 64-bit output of R , both can verify the response of the other party and
mutually authenticate each other on the basis of KT . Instead of storing the key KT for each transponder, a
lock is able to derive KT from a transponder’s ID IT , the authentication data D, and part of the long-term
system key. A key derivation function K is used for this purpose, i.e.,

KT =K (KLi
; IT , D) for some 0≤ i ≤ 3.

Please note that the index i, selecting one of the four subkeys of the system key, is selected during the
execution of the authentication protocol.

5.5.2 Cryptographic Primitives

In the authentication protocol, the two basic functions K (for key derivation on the door’s side) and R
(for response computation) are used. These functions are proprietary constructions and share two building
blocks we denote as O and D. While it turned out that D is simply a modified Data Encryption Standard
(DES) [Nat77], what we call “the obscurity function” O is a more intricate design, which we are describing
in the following. Please note that, in order to give SimonsVoss time to upgrade their security, we do not
disclose the modifications that were applied to the DES at this time.

The O function takes two 128-bit inputs (a plaintext and a key) and returns a 128-bit output (the cipher-
text). Figure 5.3 shows the internal structure of O . This function operates byte-wise on two registers with
16 8-bit cells. The upper registers are continuously updated while the lower registers remain constant.

Figure 5.3: Structure of the obscurity function

To compute the output of O the upper X registers are initialized with the plaintext (we denote this state
as X (0)), while the lower Y registers are set to the key. After that, the registers are updated successively,
all in all each of the X registers is updated for 8 times, according to the following scheme: updates start
with X0, then X1, etc., and are computed mostly as sums of 8-bit values modulo 256. Additionally, each cell
update incorporates an 8-bit chaining value Zi, which is the result of the update of the preceding cell. The

update equation for the successive state X
(r+1)
i

from X
(r)

i
for all 0≤ i ≤ 15 is given as

X
(r+1)
i

= X
(r)

i
+ Yi + Z

(r)

i
+mod28 with 0≤ r < 8. (5.1)

59

Chapter 5 Security Analysis of the SimonsVoss 3060 Locking System

There are basically three ways the chaining value is computed for any round r,

Z
(r)

i+1 =

X
(r)

i
+ 2
�

Yi + Z
(r)

i

�

mod 28 if i ∈ {0, ..., 14} \ {3,7,12},

X
(r)

i
+ 2
�

Yi + Z
(r)

i

�

+ RCr+1 mod 28 if i = 7,
�

Yi + Z
(r)

i
mod 28
�

+ X
(r)

i
≫ 1 mod 28 if i ∈ {3,12}.

(5.2)

with the first Z0 being assigned depending on r, i.e.,

Z
(r)
0 =

RC0 if r = 0,

X
(r−1)
15 + 2
�

Y15 + Z
(r−1)
15

�

mod 28 if 0< r ≤ 8.

Please note that all RCr are 8-bit round constants, which we do not disclose at this time (cf. Subsection 5.7.2).
The function’s output is given by the contents of the X cells after 8 rounds, i.e.,

X (8) = O
�

Y ; X (0)
�

.

K : Key Derivation Function

In the following we describe how D and O are combined to construct the key derivation function, which
is used only in the door. This function can be decomposed into three blocks, D and two instances of the
aforementioned obscurity function O , as illustrated in Figure 5.4.

Figure 5.4: Construction of the key derivation function

The construction has four inputs, one fixed to 64 zero bits and two other 128-bit inputs that are exchanged
in the authentication protocol: the value P0, used twice during key derivation, is composed of the first three
bytes IT0

, IT1
, IT2

of the transponder ID IT and the first three bytes D0, D1, D2 of the authentication data D.
The last of each of these bytes is masked by a Boolean AND-operation with the fixed constant 0xC7 or 0x3F,
respectively, thus selecting only certain bits. All other bytes are filled with zeros, i. e.,

P0 =

�

IT0
, IT1

, IT2〈0..2〉
||03||IT2〈6〉

||IT2〈7〉
, D0, D1, D2〈0..5〉

||02, 0, . . . , 0
�

28
.

Only one input of K is secret: one of the four 128-bit keys of the system key set is selected according to
the two most significant bits of the third byte of IT . This 128-bit key is used as key KL for the first instance
of O to encrypt P0. The output of this operation is split into two 64-bit halves, which are used as plaintext
and key for D. The output of D, denoted by T , is then concatenated with 64 zero bits, and the result is
encrypted with O—using P0 as the key. The resulting 128-bit value is the transponder’s key KT , i. e.,

K (KL; P0) = O (P0;D
�

O (KL; P0)〈64..127〉;O (KL; P0)〈0..63〉

�

||064).

60

5.6 Cryptanalysis

R: Response Computation Function

The structure of the response computationR is very similar to the key derivation functionK . However, the
way the building blocks are combined is different. Figure 5.5 shows the internal structure of R .

Figure 5.5: Construction of the response computation function

Again two instances of the proprietary obscurity function O are used along with the modified DES D. The
128-bit input P1 to R is the concatenation of the challenge C and part of the authentication data D, i. e.,

P1 = (C0, C1, ..., C10, D6, D7, D8, D9, 0)28 .

The output of the first instance of O is used as key for the second iteration of O . The 128-bit input P2 is
fixed for every transponder/lock combination and is composed of more bytes taken from the IDs of lock and
door, i. e.,

P2 = (IL2
, IT2

, IT3
, D3, D4, D5, 0, ..., 0)28 .

The output of this operation is split into two 64-bit halves, whereas the first half is used as plaintext for D
and the second as the respective key. The two halves of the 64-bit result R form the responses R0 and R1

used in the protocol, i. e.,

R
�
KT ; P1, P2
�
= D
�

O
�
O
�
KT ; P1
�

; P2
�

〈64..127〉 ;O
�
O
�
KT ; P1
�

; P2
�

〈0..63〉

�

5.6 Cryptanalysis

In the following we present three non-invasive attacks that allow to recover the longterm key KT of a partic-
ular transponder. The presented attacks exploit a subset of the following weaknesses we have discovered in
the design of the authentication scheme:

1. When the door computes

R(t) =R
�

KT ; P
(t)
1 , P

(t)
2

�

to verify the transponder’s response, 40 bits of the internally computed DES key are used as part of
the next challenge, i. e.,

P
(t+1)
1〈16..55〉

= O
�

O
�

KT ; P
(t)
1

�

; P
(t)
2

�

〈64..103〉

In the following denote this string of 40 leaked bits as V
(t)
L .

2. Looking at one instance of O and the equations describing the LSBs of each X cell after 8 rounds, these
bits are only dependent on 32 bits of the key. More specifically, the equations reveal that the LSBs
of the Y cells occur in non-linear combinations, while the bits next to the LSBs occur only in linear
combinations.

61

Chapter 5 Security Analysis of the SimonsVoss 3060 Locking System

This observation can be generalized for any bit b in the 16 output bytes, for cases where M instances
of O are chained (like in R). Here, the M + b lower bits per byte of the key are found in non-linear
combinations in the output bits at position b, while bits at position M + b+ 1 are only appearing in
linear combinations.
Thus, in a sense even multiple instances of O resemble a T-function (a concept we introduce and
explain in Section 5.6.1), making it significantly easier to invert them.

3. The O construction is quite predictable when trying to estimate XOR differences in output pairs when
given a specific input difference. For instance, for the first two blocks of the response computation
function, i.e., V = O (O (KT ; P1); P2), we easily found some input differences (for the first application
of O)

∆P1 = P1 ⊕ P ′1 with KT , P1, P ′1, P2 ∈ {0,1}128

for which the corresponding output difference

∆V = O
�
O (KT ; P1); P2
�
⊕O (O (KT ; P1 ⊕∆P1); P2)

is highly predictable.
4. The output of K , and thus every transponder key, has actually only 64 bits of entropy (the output of
D). We denote this 64-bit value as T , which—if recovered—allows to compute the full 128-bit key
KT , if the corresponding P0 is known. Note that this fact alone allows to break the scheme in practice
using dedicated hardware.

Especially the first item is a crucial flaw in the protocol. However, it is a well-known fact that obtaining
“good” random numbers in (constrained) embedded systems is hard and costly, therefore it is not entirely
surprising that these seemingly random looking bits are re-used as challenge.

5.6.1 Differential Attack

The following attack is—chronologically speaking—the first attack to break the system in a practical way. It
exploits the first three of the four listed weaknesses, i.e., the 40-bit leak of the internal state, the resemblance
of a T-function of O and the distribution of XOR differences. The naive version of this attack works in two
stages:

1. From the observation of two full authentication runs, we know inputs P1, P2 and output R of R , as
well as 40 bits VL of its internal state. Obtain the set of all potential outputs V of the second instance
of O by inverting D for all possible keys.

2. Given any pair of inputs P2, V ∈ V for O , we have to obtain its “key” U , with V = O (U; P2), which is the
output of the first instance of O . Given U , P1, we have to find candidates for KT with U = O (KT ; P1)

and verify them accordingly.
Assuming that inverting O with two arbitrary 128-bit inputs always yields only one key candidate (which is
not the case), we would have to perform

221
︸︷︷︸

#DES keys

· 23
︸︷︷︸

#outputs/key

· 2
︸︷︷︸

#inversions/output

= 225

inversions of O in the worst case. In order to reduce this and enable a more efficient attack, we exploit the
weak distribution of XOR differences, which we will describe now. After that, we will describe how to invert
O , once one of its inputs and the output is known. From the latter description, the entire attack follows
canonically.

62

5.6 Cryptanalysis

Finding and Filtering Outputs

Here we describe, how we can use publicly observable data of several, successful authentication runs to
effectively reduce the set of all potential outputs of the second instance of O in R . The general idea is to
use highly predictable XOR differences after O and before D to distinguish right guesses for the key of the
DES from wrong ones.

∆P1 #∆V

0x00000000800000000000000000000000 64
0x00000000000000000000000080800000 64
0x00000000808000000000000000000000 128

Table 5.1: Number of occurrences of different XOR differences ∆V

We will shortly explain what we mean by “highly predictable XOR differences”: for a fixed set of P2, K ∈R

{0,1}128 and L random choices of P
(i)
1 ∈R {0,1}128 we have counted how many different output differences

∆V (i) = O
�

O
�

K; P
(i)
1

�

; P2

�

⊕O
�

O
�

K; P
(i)
1 ⊕∆P1

�

; P2

�

with 0≤ i < L (5.3)

we observe. Table 5.1 shows some of the results we have obtained3 by experimenting with different input
XOR differences. The first row indicates that, if we choose

∆P1 = 0x00000000800000000000000000000000 and L≫ 64,

we will observe only 64 different output differences as described by Equation 5.3. From these 64 output
differences we can derive the expected difference which we denote as a string of 128 characters, i.e., ∆EV ∈

{’0’,’1’,’?’}128. A ’0’ here means the output differences always have a 0 at the respective position, a ’1’ means
it is always 1. These bits we call the known difference bits since they are fixed, independent of an actual
key and can be determined in advance. A ’?’ indicates that at these positions the output differences assume
different values, depending on the key. Conversely, we call these bits the unknown difference bits. The first
row of the table thus indicates that we can expect a ∆EV with 122 known and 6 unknown difference bits.

Assuming that, by observing N successive authentications between a genuine transponder and lock, we
have obtained a set

T :=
n�

P
(0)
1 , P2,R(0)
�

, ...,
�

P
(N−1)
1 , P2,R(N−1)

�o

of input/output tuples (P2 is always constant), we use the following method to find a tuple that promises to
most dramatically reduce the number of potential outputs.

1. Successively pick input/output tuples
�

P
(i)
1 , P2,R(i)
�

with 0≤ i < N − 1.

a) For a given
�

P
(i)
1 , P2,R(i)
�

successively pick pairs
�

P
(j)

1 , P2,R(j)
�

for all i < j < N − 1.

i. For P
(i)
1 , P

(j)

1 compute the XOR difference in the output of O for a set of L randomly chosen

keys K(0), ..., K(L−1) ∈R {0,1}128, i.e.,

∆V (l) = O
�

O
�

K(l); P
(i)
1

�

; P2

�

⊕O
�

O
�

K(l); P
(j)

1

�

; P2

�

with 0≤ l < L.
3To find the presented input differences (and more), we have used a simple genetic algorithm which explores XOR differences in

the input.

63

Chapter 5 Security Analysis of the SimonsVoss 3060 Locking System

ii. From the observed output differences ∆V (l) with 0 ≤ l < L derive the expected difference
∆EV .

iii. Keep track of (i, j) with XOR difference ∆P1 = P
(i)
1 ⊕ P

(j)

1 for which the expected output
difference ∆EV has the least amount of unknown difference bits. A more refined expression
of this criterion which will be described later.

The execution time of this method to determine a good filter depends on the choice of N and L, i.e.,
�

(N − 1)2+ (N − 1)

2

�

· L · 4

is the number of inner computations of O in the filter generation algorithm. However, for all of our experi-
ments, it turned out that this step is negligible with regard to its computation time.

Given a selection (i, j) of T as output of above algorithm, we continue to use

P
(i)
1 , P2,R(i), V

(i)
L = P

(i+1)
1〈16..55〉

and P
(j)

1 , P2,R(j), V
(j)

L = P
(j+1)
1〈16..55〉

with ∆P1 = P
(i)
1 ⊕ P

(j)

1

and the corresponding expected output difference ∆EV as filter. We proceed with finding the set V of
potential outputs with

O
�

O
�

KT ; P
(i)
1

�

; P2

�

∈ V,

where KT is unknown. It has to be kept in mind that each V ∈ V is the concatenation of the DES plaintext VP

and the used key VK , i.e., V = VP ||VK . Of the 64-bit key, we know the first 40 bits because they are re-used
as succeeding challenge, but 24 bits remain unknown. Of these 24 bits, only 21 are effectively used by the
DES. Before we proceed with describing the actual algorithm, we need to introduce two helper methods
which operate on the expected XOR difference (or parts thereof):

ψ
�
∆EV
�

Returns the number of unknown difference bits, but ignores the positions belonging to the
parity bits of the DES key.

ξ
�
∆EV,β
�

Replaces the unknown positions in the expected difference string with single bits taken from
β . The second input is expected to be a string of as many bits as the first input has ’?’. Also
ignores parity bits.

Our attack iterates over the 21 unknown DES key bits (the parity bits are initially set to zero) in order to
obtain a minimal set V:

1. For P
(i)
1 , P

(j)

1 compute the expected difference ∆EV in the output of O and input of D respectively.
2. Let V be the empty set, V := ;.
3. Iterate over all 221 possible 21-bit strings α and do the following:

a) For R(i),R(j) construct the respective key hypotheses γ(i),γ(j) from the leaked parts of the key and
the guessed value α, i.e.,

γ(i) = V
(i)
L ||α〈0..6〉||0||α〈7..13〉||0||α〈14..20〉||0 and

γ(j) = V
(j)

L ||α〈0..6〉||0||α〈7..13〉||0||α〈14..20〉||0.

b) Decrypt R(i) with the modified DES accordingly, i.e.,

δ(i) = D−1
�

γ(i); R(i)
�

,

thus obtaining a hypothesis for the corresponding DES plaintext.

64

5.6 Cryptanalysis

c) Determine n = ψ
�

∆EV〈104..127〉

�

and iterate over all 2n possible n-bit strings β and do the
following:

i. Modify the original hypothesis for R(j) according to the guessed value β for the unknown
difference bits and decrypt accordingly, i.e.,

δ(j) = D−1
�

γ(j) ⊕
�

040||ξ
�

∆EV〈104..127〉 ,β
��

; R(j)
�

,

thus obtaining a hypothesis for the DES plaintext (based on the guessed values α and β).
ii. Test whether δ(i) ⊕ δ(j) matches the known difference bits of ∆EV〈0..63〉, which indicates

that γ(i) might be correct. If this is the case, add the eight4 possible variants of δ(i)||γ(i) as
potential outputs of O to V.

If ψ
�

∆EV〈104..127〉

�

is the number of unknown difference bits in the guessed part of the DES key, the num-

ber of DES decryptions and tests of this algorithm is 221+ψ(∆E V〈104..127〉) (in the worst case). Consequently,
depending on the amount of unknown bits ψ

�

∆EV〈0..63〉

�

in the plaintext part of the DES inputs, the size
of V can be estimated by

|V| ≈ 8 ·

(

2ψ(∆E V〈104..127〉)+ψ(∆E V〈0..63〉)−43 if 21+ψ
�

∆EV〈104..127〉

�

> 64−ψ
�

∆EV〈0..63〉

�

,

1 if 21+ψ
�

∆EV〈104..127〉

�

≤ 64−ψ
�

∆EV〈0..63〉

�

.

The intuition behind this approximation is that we need one known bit in the expected difference to validate
(or filter) one bit we guess; we guess 21+ψ

�

∆EV〈104..127〉

�

bits in total while 64−ψ
�

∆EV〈0..63〉

�

is the
amount of known bits in the plaintext part of the XOR differences. If we guess less bits than we know, our
filter is most efficient and thus the size of V is minimal. Please also note that it only makes sense to filter V
in this way, when it can be expected that |V| ≪ 224. In any other case, directly trying out all 224 possibilities
for the DES plaintext (without filtering via XOR differences) would be more efficient.

Inverting the Obscurity Function

The proprietary construction we call the “obscurity function” resembles a T-function, a concept presented
by Alexander Klimov in 2002 [KS02, KS03]. A T-function is a mapping that updates each bit of the state
of the cipher based on a linear combination of the same bit and some function f of all less significant bits.
Assuming we have a cipher with an n-bit state we denote as x =

�

x〈0〉, x〈1〉, ..., x〈n−1〉

�

2
, the corresponding

description of the update function in the sense of a T-function would be as follows:

x
(t+1)
〈i〉

= x
(t)

〈i〉
⊕ f
�

x
(t)

〈0..i−1〉

�

for all 0≤ i < n and t > 0.

If we consider the update function of O (cf. Equation 5.1) of each 8-bit cell X i with 0≤ i ≤ 15 over 8 rounds
we get

X
(r+1)
i〈 j〉

= X
(r)

i〈 j〉
⊕ Yi〈 j〉

⊕ Z
(r)

i〈 j〉
⊕ fU

�

X
(r)

i〈0.. j−1〉
, Yi〈0.. j−1〉

, Z
(r)

i〈0.. j−1〉

�

(5.4)

for all 0≤ j ≤ 7 and 0≤ r < 8. However, it should be noted that all Zi themselves depend on the preceding
X and Y values in a non-linear way, i.e.,

Z
(r)

i
= fZ

�

X
(r)
0 , ..., X

(r)

i−1, Y0, ..., Yi−1

�

.

4DES uses only 21 of the 24 unknown bits, so three bits are still not uniquely determined by matching the expected difference.

65

Chapter 5 Security Analysis of the SimonsVoss 3060 Locking System

Note that fU is a non-linear function that computes the respective carries of the addition modulo 256, while
fZ is just another expression of Equation 5.2. Comparing the update function of O in Equation 5.4 with the
previously given definition of a T-function, we see that the resemblance is quite obvious not only for updates
of 8-bit cells, but also for the entire 128-bit state.

We have studied the resulting equations in more detail, which we will describe now. Given a plaintext
X (0) and a ciphertext X (8), the task is to find a possible 128-bit key Y with

X (8) = O
�

Y ; X (0)
�

.

We have generated the equation system describing the LSBs of the ciphertext in relation to the key and
plaintext:

Y9〈1〉 ⊕ f0

�

Y0〈0〉 , ..., Y15〈0〉 , X (0)
�

= X
(8)
0〈0〉

Y10〈1〉 ⊕ f1

�

Y0〈0〉 , ..., Y15〈0〉 , X (0)
�

= X
(8)
1〈0〉

Y11〈1〉 ⊕ f2

�

Y0〈0〉 , ..., Y15〈0〉 , X (0)
�

= X
(8)
2〈0〉

f3

�

Y0〈0〉 , ..., Y15〈0〉 , X (0)
�

= X
(8)
3〈0〉

Y11〈1〉 ⊕ Y13〈1〉 ⊕ f4

�

Y0〈0〉 , ..., Y15〈0〉 , X (0)
�

= X
(8)
4〈0〉

Y14〈1〉 ⊕ f5

�

Y0〈0〉 , ..., Y15〈0〉 , X (0)
�

= X
(8)
5〈0〉

Y15〈1〉 ⊕ f6

�

Y0〈0〉 , ..., Y15〈0〉 , X (0)
�

= X
(8)
6〈0〉

Y0〈1〉 ⊕ f7

�

Y0〈0〉 , ..., Y15〈0〉 , X (0)
�

= X
(8)
7〈0〉

Y0〈1〉 ⊕ Y1〈1〉 ⊕ f8

�

Y0〈0〉 , ..., Y15〈0〉 , X (0)
�

= X
(8)
8〈0〉

Y2〈1〉 ⊕ Y1〈1〉 ⊕ f9

�

Y0〈0〉 , ..., Y15〈0〉 , X (0)
�

= X
(8)
9〈0〉

Y2〈1〉 ⊕ Y3〈1〉 ⊕ f10

�

Y0〈0〉 , ..., Y15〈0〉 , X (0)
�

= X
(8)
10〈0〉

Y3〈1〉 ⊕ f11

�

Y0〈0〉 , ..., Y15〈0〉 , X (0)
�

= X
(8)
11〈0〉

g
�

Y0〈0〉 , ..., Y15〈0〉 , X (0)
�

Y3〈1〉 ⊕ Y5〈1〉 ⊕ Y4〈1〉 ⊕ Y3〈2〉 ⊕ f12

�

Y0〈0〉 , ..., Y15〈0〉 , X (0)
�

= X
(8)
12〈0〉

Y6〈1〉 ⊕ Y5〈1〉 ⊕ Y3〈1〉 ⊕ f13

�

Y0〈0〉 , ..., Y15〈0〉 , X (0)
�

= X
(8)
13〈0〉

Y1〈1〉 ⊕ Y6〈1〉 ⊕ f14

�

Y0〈0〉 , ..., Y15〈0〉 , X (0)
�

= X
(8)
14〈0〉

Y8〈1〉 ⊕ Y7〈1〉 ⊕ f15

�

Y0〈0〉 , ..., Y15〈0〉 , X (0)
�

= X
(8)
15〈0〉

What we can observe, initially, is that the LSBs of the ciphertext are only dependent on a small subset of
key bits (and the plaintext). Apparently only the two LSBs per key byte are involved in the computation.
We can obtain the values of the non-linear functions fi with 0 ≤ i ≤ 15 by guessing one LSB per key byte
and setting all remaining bits to 0. This produces a key hypothesis α, which, if used to “encrypt” the known
plaintext, yields

β = β〈0〉||β〈1〉||...||β〈128〉 = O
�

α; X (0)
�

with fi(...) = β〈8i〉 for all 0≤ i ≤ 15.

66

5.6 Cryptanalysis

The value of g can be computed explicitly—based on the guessed key—with the help of this equation:

g(...) = X
(0)
3〈0〉
α3〈0〉 ⊕ X

(0)
2〈0〉
α3〈0〉 ⊕ X

(0)
2〈0〉

X
(0)
3〈0〉
⊕ X

(0)
11〈0〉
⊕ X

(0)
3〈1〉
⊕ X

(0)
2〈1〉
⊕ X

(0)
1〈0〉
⊕α4〈0〉 ⊕α2〈0〉 .

With this information, the equation system becomes entirely linear, although it does not have full rank. The
upside is that we can exploit some of the obtained equations to filter invalid guesses, e.g., here we know
that

f3

�

Y0〈0〉, ..., Y15〈0〉 , X (0)
�

= X
(8)
3〈0〉

.

However, for all four solutions solving the resulting system, we obtain more bits of the key (based on our

initial guess). If we use them to generate equations for the next bits of the ciphertext, i.e., X
(8)
0〈1〉

, ..., X
(8)
15〈1〉

,

we observe a phenomenon quite similar to what we have seen for the LSBs: the ciphertext bits are only
dependent on three bits per key byte and the describing equations are already linear. If we combine above
observations with the fact that one key bit can easily be derived from plaintext and ciphertext via XORs, i.e.,

Y4〈0〉 = X
(8)
3〈1〉
⊕

11⊕

i=4

�

X
(8)
0〈i〉
⊕ X

(0)
0〈i〉

�

(5.5)

we can formulate an attack, which requires us to initially guess only 15 bits of Y .
Denote for a subset S⊂ {0, . . . , 127} by YS ∈ {0,1}128 the projection of Y to S, i. e.,

�
YS
�

〈i〉 =

(

Y〈i〉 if i ∈ S,

0 if i /∈ S,

and let Oi

�

Y ; X (0)
�

be the i-th LSBs of the ciphertext, i.e.,

Oi

�

Y ; X (0)
�

=
�

O
�

Y ; X (0)
�

〈i〉
,O
�

Y ; X (0)
�

〈8+i〉
, ...,O
�

Y ; X (0)
�

〈120+i〉

�

2
for all 0≤ i ≤ 7

for which we find
Oi

�

Y ; X (0)
�

= Oi

�

YSi ; X (0)
�

+ li
�

YSi+1\Si

�

where li are linear mappings of the respective key bits for these sets:

S0 = {0,8,16,24,32,40,48,56,64,72,80,88,96,104,112,120},

S1 = S0 ∪ {1,9,17,25,26,33,41,49,57,65,73,81,89,105,113,121},

S2 = S1 ∪ {2,10,18,27,34,42,50,58,66,74,82,90,97,106,114,122},

S3 = S2 ∪ {3,11,19,28,35,43,51,59,67,75,83,91,98,107,115,123},

S4 = S3 ∪ {4,12,20,29,36,44,52,60,68,76,84,92,99,108,116,124},

S5 = S4 ∪ {5,13,21,30,37,45,53,61,69,77,85,93,100,109,117,125},

S6 = S5 ∪ {6,14,22,31,38,46,54,62,70,78,86,94,101,110,118,126},

S7 = S6 ∪ {7,15,23,39,47,55,63,71,79,87,95,102,111,119,127},

S8 = S7 ∪ {103}= {0, ..., 127}.

Given a plaintext/ciphertext tuple
�

X (0), X (8)
�

, this structure of O immediately leads to a recursive attack:
one first determines Y〈32〉 (cf. Equation 5.5) and guesses the remaining 15 key bits in S0 and sets up a

67

Chapter 5 Security Analysis of the SimonsVoss 3060 Locking System

system of linear equation for the bits in S1 using O0. For each solution, one recursively sets up and solves
the corresponding linear system for the bits in Si using the values of Oi for 1 ≤ i ≤ 6. Finally, Y〈103〉 can
be determined from O7, where it is the last unknown key bit. Please note that at each step we obtain some
equations that are independent of the key bits we are trying to resolve at that stage, which implies the
following:

1. The equation systems are underdetermined, so we obtain multiple solutions at each stage, i.e., 4
solutions for O0,O6 and always 8 solutions for Oi with 1≤ i ≤ 5.

2. Equations that are only dependent on the known (i.e., guessed or derived) bits can be used to filter
initial guesses (i.e., bits in S0). Especially the equation system for O7 provides a very effective filter:
in the 16 resulting equations, only one key bit Y〈103〉 is unknown.

Latter fact leads to the property that, if a guess does not contradict any of the equation systems we obtain,
it is most likely the correct key Y .

Results

We have used the free SAGE5 computer algebra system to implement a symbolic version of the obscurity
function. This allowed us to generate equations, depending on which bits of the key and input are known
and was thus important in understanding the characteristic of the obscurity function. However, the increas-
ing non-linearity from LSB to Most Significant Bit (MSB) in the output bits did not allow to obtain a full
equation system, describing each bit of the output as a function of key bit and plaintext variables.

Based on the described analysis, which was facilitated by our symbolic version of O , we have implemented
the proposed two-stage attack in the C programming language. The only optimization we have applied was
that we have used multi-threading to distribute the search space for the DES decryptions and the inversion
of O across the Intel Xeon E5540 CPU.

From N = 35 consecutive runs of the authentication protocol, we have obtained the corresponding set

T :=
n�

P
(0)
1 , P2,R(0)
�

, ...,
�

P
(34)
1 , P2,R(34)
�o

.

In T we found one pair of tuples suitable for filtering via XOR differences: for this pair, we found 9 known
bits in ∆EV〈104..127〉 (i.e., the part of the DES key we are guessing) and only 12 unknown bits. Additionally,
we had 22 known bits in ∆EV〈0..63〉 (i.e., the plaintext part of V) and thus expected to find |V| ≈ 2048, for
which we had to test 233 hypothesis pairs. We found 1975 potential outputs in V, of which we had to test
only the first 5% in order to find KT after 23.3 minutes of total computation.

5.6.2 Active Attack

Based on the previously presented results, a variant of the attack was developed by Gregor Leander which
completely ignores the DES and also exploits all four weaknesses.

For the attack, the targeted transponder’s ID has to be known in advance. Additionally, four partial
authentications are required. A partial authentication can be initiated by anyone, does not require a valid
transponder key and is aborted after the challenge was sent by the door. In this sense, the attack does not
require eavesdropping of genuine authentication runs.

The full description of the attack and the trade-offs between available challenges, computation time and
number of resulting key candidates can be found in our joint paper [SDK+13].

5See http://sagemath.org/.

68

http://sagemath.org/

5.6 Cryptanalysis

5.6.3 Passive Attack

The following attack is designed to work with an absolute minimum of protocol runs and incorporates all
four weaknesses listed in the beginning of this section. The attack is basically an extension of the attack on
a single instance of O and works by merging the last instance of O in K with the two instances in R . We
have observed that even for this merged function the same principles, which allowed us to mount the attack
in Section 5.6.1, hold. Subsequently, we denote the iterated application of O by

O 3 : F128
2 × F64

2 × F
128
2 × F128

2 → F128
2

O 3(P0; T, P1, P2) → V,

which is naturally defined as

O 3 �P0; T, P1, P2
�
= O
�

O
�

O
�

P0; T ||064
�

; P1

�

; P2

�

= V.

Here, we denote by T the “pre-key”, from which the transponder-key is derived in K . Thus, the goal of this
attack is to recover T , from which KT can be derived via KT = O

�

P0; T ||064
�

as described in Section 5.5.2.

As for the notation, again, we split the output of O 3 into 8 chunks of 16 bits (with O 3
0 being the LSBs, O 3

1
the next bits per output byte, etc.), i. e.,

O 3
i (P0; T, P1, P2) =

�

O 3 �P0; T, P1, P2
�

〈i〉 ,O
3 �P0; T, P1, P2
�

〈8+i〉 , ...
�

2
for all 0≤ i ≤ 7

and denote for a subset S⊂ {0, . . . , 127} by TS ∈ {0,1}128 the projection of T to S, i. e.,

�
TS
�

〈i〉 =

(

T〈i〉 if i ∈ S,

0 if i /∈ S.

We have, similarly to the equations we have observed in Section 5.6.1,

O 3
i

�
P0; T, P1, P2
�
=

O 3
0

�

P0; TS0 , P1, P2

�

if i = 0,

O 3
i

�

P0; TSi−1
, P1, P2

�

+ li
�

TSi\Si−1

�

if 1≤ i ≤ 4,

O 3
i

�

P0; TSi , P1, P2

�

if 5≤ i ≤ 7,

where li
�

TSi\Si−1

�

are linear mappings of rank 5 for these sets of key bits:

S0 = {0,8,16,24,32,40,48,56}

∪ {1,9,17,25,33,41,49,57}

∪ {2,10,18,26,34,42,50,58}

∪ {3,11,19,27,35,43,51,59}

S1 = S0 ∪ {4,12,20,28,36,44,52,60}

S2 = S1 ∪ {5,13,21,29,37,45,53,61}

S3 = S2 ∪ {6,14,22,30,38,46,54,62}

S4 = S3 ∪ {7,15,23,31,39,47,55,63}

S5 = S6 = S7 = S4 ∪ {} = {0, . . . , 63}.

69

Chapter 5 Security Analysis of the SimonsVoss 3060 Locking System

Here, we deliberately choose S0 to contain 32 key bits, because guessing these actually fixes 25 bits of O 3,
which are completely independent of any other key bit. Having this many fixed bits is advantageous, as will
be understood in the following description of the actual attack.

It is important to note that we cannot apply the same recursive attack principle (cf. Section 5.6.1) directly,
because in order to do this, we would need to be in possession of an actual output V of O 3. This is not the
case, however, due to the 40-bit leak, we know some bits of V , which allows to run a meet-in-the-middle
attack: if we can observe two consecutive authentication runs at time t and t + 1, we know a tuple

�

P0, P
(t)
1 , P2,R(t), V

(t)
L

�

with V
(t)
L = P

(t+1)
1〈16..55〉

.

We then try to find a 64-bit value α as pre-key and a full 64-bit DES key β (of which only 56-bits are used)
such that

O 3
�

P0;α, P
(t)
1 , P2

�

= D−1
�

β ; R(t)
�

||β with β〈0..39〉 = V
(t)
L . (5.6)

In this sense, we literally try to meet with the two (partially) guessed values α and β in the “middle”, which
is the output V of the second instance of O in R . If we find a match, the guessed keys for the two ends of
the attacked construction are possibly correct.

We begin as follows: due to V
(t)
L we already know 35 bits of the key used for the modified DES in R . We

invert D by decrypting R(t) for all 221 possible keys with the modified DES. For each guess, we obtain 8
different 64-bit key candidates. The 224 results of this operation are stored in a sorted lookup table, each
entry consisting of a 128-bit string, being the concatenation of DES plaintext and key (see right hand side
of Equation 5.6) and thus a potential output of O 3. The entries in the table are in this way very similar to
the set V which we can obtain via XOR difference filtering (cf. Section 5.6.1), only that here we need only
1.5 authentications.

The remainder of the attack proceeds in a manner quite similar to the first attack. One starts by guessing
all 32 bits of T in S0. This allows to compute O 3

0 and parts of O 3
1 which are then matched against the lookup

table to filter wrong candidates. Please note that here we have a very strong filter, i. e., 25 bits for a table
with 224 entries. For all remaining candidates one recursively sets up and solves a linear system for the bits
of T in Si with 1 ≤ i ≤ 4. At each step, a partial matching is used to further filter out wrong candidates.
After solving equations for key bits in S4 the entire key is known and thus O 3

5 ,O 3
6 and O 3

7 are only used to
filter further. The guessed (and derived bits) that pass all filters constitute the correct T , from which KT can
easily be computed with the help of P0.

Interestingly enough, this attack would even work (in principle) when V
(t)
L is no longer leaked, which

would be a trivial fix of the authentication protocol. The only difference would be that one would start by
guessing the 32 bits of S0 and build a table based on the resulting, fixed bits.

Results

We have implemented the attack in C and used multi-threading on the Intel Xeon E5540 CPU. We were able
to obtain the transponder key after recording one real-world authentication and the succeeding challenge
and approx. 15 minutes of computation. The average runtime of the attack is approx. 17 minutes.

5.7 Discussion and Future Work

In this section we shortly compare the presented attacks with regard to their requirements in recorded data
and processing time. Furthermore, we shortly elaborate on how the system can be improved in a practical
way, i.e., with modifications only on the side of the infrastructure (i.e., backend and locks).

70

5.7 Discussion and Future Work

Future work would very likely include an analysis of the authentication between the doors, programming
devices and the 868 MHz communication nodes. Attacks on these parts of the system probably offer even
more powerful methods to influence the system’s behavior, for instance by reprogramming locks with back-
doors. Additionally, some ingenious methods for eavesdropping on genuine authentications without a user
noticing it could be devised and tested. Of particular interest is finding out, whether it is possible to extract
protocol information by using the metal frame of a SimonsVoss equipped door as “antenna” for the near-field
of the 25 KHz link between transponder and lock.

5.7.1 Comparison of Attacks

Due to the existence of (at least) three different, very efficient attacks that are practical in a real-world
setting, it is obvious that the authentication protocol is severely flawed.

In Table 5.2, we compare the three respective attacks with regard to their requirements. While the active

Attack A priori knowledge #Auths #Challenges Time

Differential None > 2 0 > 1 mins
Active IDT 0 4 11.5 secs
Passive None 1 1 17.1 mins

Table 5.2: Comparison of the three attacks on the “Generation 2” authentication scheme

and passive attacks are quite predictable when it comes to required data and processing times, this cannot
be said for the differential attack. Here, it solely depends on how predictable to best XOR difference in the
set of eavesdropped authentications is. This is influenced by how many authentications are available for
filtering: the more data can be recorded, the better the probability for a good filter, the less computation
is necessary to recover the whole key. In this sense, the attack offers a time/data trade-off and the given
requirements in the table are to be considered as experimentally determined lower bounds. It should be
noted that, although the differential attack is typically not very competitive when compared with the other
two, it does not rely on the assumption that KT has only 64 bits of entropy. The differential attack is capable
of recovering any 128-bit key, while the other attacks can only find a 128-bit key derived from the 64-bit
intermediate value T . This is particularly interesting, because fixing the lack of entropy is one of the more
trivial mitigations we are going to suggest in Subsection 5.7.2.

The active and passive attacks are quite comparable; which attack is preferable depends on which scenario
is more likely: if it is possible to guess a valid IDT or obtain it from a transponder by reading it out
secretly, the active attack has the advantage because from there on, as little as four interactions with a
door only are required and the key can be computed in negligible time. If the ID cannot be guessed or
obtained by “borrowing” a transponder, it has to be recorded from a genuine authentication run. In this
scenario, the passive attack has the lead, because it requires only one valid authentication (i.e., requires
eavesdropping communication between a genuine transponder and a lock) and the following challenge to
succeed—although it is quite a bit slower, but still very practical indeed.

5.7.2 Mitigations

Here we are discussing four mitigations, which should all be applied, in order to dramatically improve the
resistance of the system against the mathematical attacks. The idea of these mitigations is that we want
to avoid having to reprogram every transponder that is circulating in an installation. Instead, only doors
should need to be reprogrammed, which is apparently even possible via the door’s link to the backend.

71

Chapter 5 Security Analysis of the SimonsVoss 3060 Locking System

1. Randomization of all transponder IDs.

The ID of a transponder has 32 bit, and it is currently not clear how they are chosen. Reverse engi-
neering of locks revealed that IDs such as 0x00000005 do exist, while others look more like the result
of a random process. It is advisable to choose all IDs in the system with the help of a good Random
Number Generator (RNG). If IDs cannot be guessed, the active attack becomes less powerful.

2. Full entropy for transponder keys.

Currently, each transponder key is derived from the 64-bit output of the modified DES. This enables
the very efficient active and passive attacks. If the key had full entropy, the differential attack would
still be possible, but the other two attacks would be thwarted (in the present form).

3. Decoupling of challenge generation and response computation.

By leaking 40 bits of the internal state of R , it becomes possible to very efficiently compute the
transponder key. Obtaining challenges in a way that is completely independent from the transponder
key eliminates this weakness. However, it should be taken care that the challenges do not become
worse in the sense that they improve the predictability of the XOR differences.

4. Consistency checks in backend.
In theory, the “online” version of system 3060 allows to store who opened which door at what time.
Therefore, it should be possible to detect protocol anomalies as caused by the active attack (in which
the challenges cannot be answered correctly). Since the passive and the differential attack only eaves-
drop genuine authentications, this cannot be detected at first. However, when a door is accessed at
unusual times (by someone who has managed to make a copy of a transponder, regardless of the
method), this could trigger further investigations. It should be noted that this logging feature is often
deactivated due to privacy reasons, i.e., in order to avoid creating opportunities to track employees by
their use of doors.

Please note that we do not give any recommendation on how these mitigations should be implemented.
However, if the construction of the functions is kept in principle, the security of the system will always
be upper-bounded by the the costs for breaking DES. If this is desirable, which can be disputed because
breaking DES and its 56-bit key is feasible with today’s hardware, it is likely that existing building blocks
(esp. the DES) can be re-used.

To allow SimonsVoss a reasonable time frame for the implementation of these and other mitigations, we
did not disclose the round constants of the obscurity function and also did not reveal how the DES was
modified. We did this intentionally, to hinder direct application of our attacks.

72

CHAPTER 6

CONCLUSION

This document is a testament to an engineer’s advances in understanding and applying symmetric crypt-
analysis over the course of four projects. While the first project tried to improve existing attacks on A5/1
by actual engineering work (e.g., designing hardware), all subsequent projects focused on more and more
novel attacks. It should be stated that all these attacks were enabled by simply being the first to have access
to the newly uncovered schemes, which was due to active or passive participation in reverse engineering
projects. While, in the case of GMR-1, the ideas for the attacks were already known, they were applied and
extended thoroughly and actually executed in practice. In the case of GMR-2, the act of reverse engineering
took more work than actually analyzing the cipher. However, since the uncovered design was highly pro-
prietary, the resulting keystream/time trade-off attack is an original contribution. Finally, in the case of the
locking system, the focus was entirely on analyzing the construction devised by SimonsVoss. This resulted in
two attacks, the first being still a bit unwieldy, while the meet-in-the-middle attack is more elegant—apart
from this distinction, both attacks are highly practical.

If there is, in retrospect, an actual hypothesis this document is trying to prove experimentally1, it can be
stated as a variation of an often repeated mantra:

“Security by obscurity is still a bad idea.”

Our results show that, while overcoming initial hurdles due to obscurity is usually tough, analyzing uncov-
ered security mechanisms usually leads to very satisfactory results—for the attacker. Please note that the
cryptanalytic techniques presented here do not require a great degree of sophistication or understanding/ap-
plication of some underlying theory. However, in an age where cryptography is ubiquitous and well-known
primitives of all flavors are publicly available (e.g., due to projects such as eSTREAM2), it is an interesting
curiosity that such proprietary designs are still in wide circulation.

In the following we will shortly discuss a set of probable causes for the situation we have observed in the
course of this work. We explicitly stress, that, obviously, we cannot know for sure why a particular design
was chosen, so the following is rather speculative:

1It might be argued that a sample size of N = 3 real-world crypto systems is not sufficient or even representative enough to
substantiate the stated thesis. However, considering the whole field of real-world security research, there is certainly enough
empirical evidence to support it.

2See http://www.ecrypt.eu.org/stream/.

73

http://www.ecrypt.eu.org/stream/

Chapter 6 Conclusion

• Security as add-on.

While it seems to be widely understood that security is a necessity, it is usually not enough in the focus
of a product’s development cycle. Security is, in this sense, just another requirement—however, one
for which no clear engineering approach exists since a design’s effective security is a function of how
many people of a certain expertise were unable to break it in some amount of time.
An industry that is focused on delivering products (e.g., satphones or locking systems) may rank
security behind the actual functionality of a product, but typically even more constraints are imposed:
while using the Advanced Encryption Standard (AES) might be a perfect option at times, using it
when there is only 256 bytes of FLASH available is simply not possible. Similarly, generating good
random numbers on a micro-controller without being able to sample external sources of entropy is
equally hard. Also, if the use-case calls for an entirely new paradigm for the design of a cipher, existing
standards might not be attractive. The common result of these three examples is the emergence of yet
another proprietary construction, possibly with known building blocks such as LFSRs (cf. Section 3.5),
the DES (cf. Subsection 5.5.2) or its S-boxes (cf. Section 4.5), born out of a unique set of constraints.

• Obscurity.

The fact that proprietary designs are not available to the cryptographic community for analysis allows
potential security weaknesses to remain hidden for quite a while. An effect of this is clearly that man-
ufacturers mostly do not know about security risks (as can be conjectured in the case of SimonsVoss)
or do not suffer enough public pressure to improve (as may have been the case for GMR-1 or GMR-2).
If manufacturers choose to keep details secret, they are likely be successful for a while (depending on
incentives for an attacker, for which distribution is a factor) since black-box analysis is often a tedious
task. Even worse, the longer obscurity seemingly works (not all breaks are published), the more likely
a manufacturer is going to resort to obscurity a second or third time. In this sense (and assuming
a growing market penetration over time), longer periods of successful obscurity guarantee a greater
degree of devastation once it fails.

• Duration of deployment.

The distribution of global systems is often a function of their deployment time, i.e., the longer the
system is in use, the more it spreads out around the globe. Conversely, the more distributed the
system is, the more it is exposed to public scrutiny but also, simultaneously, becomes more complex
which makes it inherently harder to fix.
GSM is here another prime example: attacks on the “good” cipher A5/1 are known for over a decade
and advances in commercial radio-technology equipment (such as the USRP-2) as well as public com-
puting efforts to compute rainbow tables have put the capability to eavesdrop GSM communication
in range of dedicated individuals (as opposed to well-funded intelligence agencies or corporations).
Despite all these reasons to abandon GSM, it is not only still in use, but also rapidly conquering
developing markets in Africa and Asia.
Only a switch to a standard that is no longer backward compatible with GSM (i.e., unlike UMTS),
and thus is not prone to the same old attacks, can potentially bring an increase in security. Although
promising attempts are made by ETSI to publicly evaluate next-generation ciphers [Bab11, ETS10a,
ETS10b], a full roll-over to this system is still in the stars.

• Historic developments.

Especially the ciphers used in globally deployed communication standards such as GSM and possibly
GMR-1 and GMR-2, were born out of a certain conflict of interest, which is best illustrated by the
following:
In 1982, Europe began to work on a cell phone system. It was the time of the “cold war” and on

74

the side of the West, a committee existed to control and limit the export of equipment to the Soviet
Union. In line with the general mindset of the US, the Coordinating Committee on Multilateral Export
Control (CoCOM) understood that cryptography is a dual-use technology, hence cell phone equipment
fell under its regulations. While it was important to have strong cryptography for the domestic market,
only weak cryptography should be exported. At that time, 40-bit security was deemed exportable and
consequently the A5-type ciphers where invented.
Since A5-GMR-1 is a variant of A5/2, the export version of the “good” A5/1 stream cipher, it can
be speculated that similar thoughts influenced the decision to use this cipher to protect over-the-air
transmissions in GMR-1.

To put the discussed aspects into perspective: with the advent of “cyber-security” as one of the top con-
cerns of the modern world, it is likely that awareness in the realm of security will increase. Combining this
with current trends in cryptographic research, where more and more specialized ciphers are developed and
published, it is likely that the average need for proprietary solutions decreases while their usage becomes
more robust. In this sense the author hopes that this work can contribute another motivating factor to “get
the security right”.

75

BIBLIOGRAPHY

[Bab11] Steve Babbage. The History and Pre-History of ZUC. Technical report, 2011.

[BBK03] Elad Barkan, Eli Biham, and Nathan Keller. Instant ciphertext-only cryptanalysis of GSM
encrypted communication. In International Cryptology Conference (CRYPTO). Springer, 2003.

[BBK08] Elad Barkan, Eli Biham, and Nathan Keller. Instant Ciphertext-Only Cryptanalysis of GSM
Encrypted Communication. Journal of Cryptology, 21(3), 2008.

[BD00] Eli Biham and Orr Dunkelman. Cryptanalysis of the A5/1 GSM Stream Cipher. In Interna-

tional Conference on Cryptology in India (Indocrypt), 2000.

[BER07] Andrey Bogdanov, Thomas Eisenbarth, and Andy Rupp. A Hardware-Assisted Realtime Attack
on A5/2 Without Precomputations. In International Workshop on Cryptographic Hardware

and Embedded Systems (CHES), 2007.

[BGS+05] Stephen Bono, Matthew Green, Adam Stubblefield, Ari Juels, Aviel Rubin, and Michael
Szydlo. Security analysis of a cryptographically-enabled RFID device. In USENIX Security

Symposium (USENIX), 2005.

[BGW99] Marc Briceno, Ian Goldberg, and David Wagner. A pedagogical implementation of the GSM
A5/1 and A5/2 “voice privacy” encryption algorithms, 1999.

[BMPP06] Andrey Bogdanov, Marius Mertens, Christof Paar, and Jan Pelzl. A Parallel Hardware Architec-
ture for fast Gaussian Elimination over GF(2). In International Workshop on Special-Purpose

Hardware for Attacking Cryptographic Systems (SHARCS), 2006.

[BSW00] Alex Biryukov, Adi Shamir, and David Wagner. Real Time Cryptanalysis of A5/1 on a PC. In
International Workshop on Fast Software Encryption (FSE), 2000.

[CONQ09] Nicolas Courtois, Sean O Neil, and Jean-Jacques Quisquater. Practical Algebraic Attacks on
the Hitag2 Stream Cipher. In International Conference on Information Security (ISC), 2009.

[Cou09] Nicolas Courtois. The Dark Side of Security by Obscurity - and Cloning MiFare Classic Rail
and Building Passes, Anywhere, Anytime. In International Conference on Security and Cryp-

tography (SECRYPT), 2009.

77

Bibliography

[DHW+12] Benedikt Driessen, Ralf Hund, Carsten Willems, Christof Paar, and Thorsten Holz. Dosn’t
Trust Satellite Phones: A Security Analysis of Two Satphone Standards. In Symposium on

Security and Privacy (Oakland), 2012.

[DKS10] Orr Dunkelman, Nathan Keller, and Adi Shamir. A Practical-Time Related-Key Attack on the
KASUMI Cryptosystem Used in GSM and 3G Telephony. In International Crytology Conference

(CRYPTO), 2010.

[EJ03] Patrik Ekdahl and Thomas Johansson. Another Attack on A5/1. 49(1), 2003.

[ETS01a] ETSI. ETSI TS 101 377-3-10 V1.1.1 (2001-03); GEO-Mobile Radio Interface Specifications;
Part 3: Network specifications; Sub-part 9: Security related Network Functions; GMR-2
03.020, 2001.

[ETS01b] ETSI. ETSI TS 101 377-5-3 V1.1.1 (2001-03); GEO-Mobile Radio Interface Specifications;
Part 5: Radio interface physical layer specifications; Sub-part 3: Channel Coding; GMR-2
05.003, 2001.

[ETS02] ETSI. ETSI TS 101 376-5-3 V1.2.1 (2002-04); GEO-Mobile Radio Interface Specifications;
Part 5: Radio interface physical layer specifications; Sub-part 3: Channel Coding; GMR-1
05.003, 2002.

[ETS10a] ETSI/SAGE. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3
and 128-EIA3. Document 1: 128-EEA3 and 128-EIA3 Specification. Version 1.4, 2010.

[ETS10b] ETSI/SAGE. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3
and 128-EIA3. Document 2: ZUC Specification. Version 1.4, 2010.

[GdKGVM12] Flavio Garcia, Gerhard de Koning Gans, Roel Verdult, and Milosch Meriac. Dismantling iClass
and iClass Elite. In European Symposium on Research in Computer Security (ESORICS), 2012.

[GGHM05] Nico Galoppo, Naga Govindaraju, Michael Henson, and Dinesh Manocha. LU-GPU: Efficient
Algorithms for Solving Dense Linear Systems on Graphics Hardware. In Conference on Super-

computing (SC), 2005.

[Gol97] Jovan Golic. Cryptanalysis of alleged A5 stream cipher. In International Conference on Theory

and Application of Cryptographic Techniques (EUROCRYPT), 1997.

[GvRVWS09] Flavio Garcia, Peter van Rossum, Roel Verdult, and Ronny Wichers Schreur. Wirelessly Pick-
pocketing a Mifare Classic Card. In Symposium on Security and Privacy (Oakland), 2009.

[KS02] Alexander Klimov and Adi Shamir. A New Class of Invertible Mappings. In International

Workshop on Cryptographic Hardware and Embedded Systems (CHES), 2002.

[KS03] Alexander Klimov and Adi Shamir. Cryptographic Applications of T-Functions. In Conference

on Selected Areas in Cryptography (SAC), 2003.

[LLMP93] Arjen Lenstra, Hendrik Lenstra, Mark Manasse, and John Pollard. The development of the

number field sieve, volume 1554 of Lecture Notes in Mathematics. 1993.

78

Bibliography

[LS00] Arjen Lenstra and Adi Shamir. Analysis and optimization of the TWINKLE factoring device. In
International Conference on Theory and Application of Cryptographic Techniques (EUROCRYPT),
2000.

[LST+09] Stefan Lucks, Andreas Schuler, Erik Tews, Ralf-Philipp Weinmann, and Matthias Wenzel. At-
tacks on the DECT authentication mechanisms. In Cryptographer’s Track of RSA (CT-RSA),
2009.

[Nat77] National Bureau of Standards. Data Encryption Standard. 46, 1977.

[NESP08] Karsten Nohl, David Evans, Starbug, and Henryk Plötz. Reverse-Engineering a Cryptographic
RFID Tag. In USENIX Security Symposium (USENIX), 2008.

[NP09] Karsten Nohl and Chris Paget. GSM: SRSLY? In Chaos Communication Congress, 2009.

[OM12] Alfredo Ortega and Sebastian Muniz. Satellite baseband mods: Taking control of the In-
marSat GMR-2 phone terminal. ekoparty Security Conference, 2012.

[PFS00] Slobodan Petrovic and Amparo Fuster-Sabater. Cryptanalysis of the A5/2 Algorithm. Techni-
cal report, 2000.

[PN09] Henrik Plötz and Karsten Nohl. Legic Prime: Obscurity in Depth. In Chaos Communication

Congress, 2009.

[SDK+13] Daehyun Strobel, Benedikt Driessen, Timo Kasper, David Oswald, Falk Schellenberg, Gregor
Leander, and Christof Paar. Fuming Acid and Cryptanalysis: Handy Tools for Overcoming a
Digital Locking and Access Control System. In International Crytology Conference (CRYPTO),
2013. To appear.

[Sha99] Adi Shamir. Factoring large numbers with the TWINKLE device. In International Workshop

on Cryptographic Hardware and Embedded Systems (CHES), 1999.

[ST03] Adi Shamir and Eran Tromer. Factoring large numbers with the TWIRL device. In Interna-

tional Cryptology Conference (CRYPTO), 2003.

[VGB12] Roel Verdult, Flavio Garcia, and Josep Balasch. Gone in 360 seconds: Hijacking with Hitag2.
In USENIX Security Symposium (USENIX), 2012.

[YP04] Thomas Yeung and Eric Poon. Binary decimal numbers and decimal numbers other than base
ten. In International Conference on The Future of Mathematics Education, 2004.

[Zha11] Mingyi Zhang. Design of a linear equation solver. Master’s thesis, EPFL, Switzerland, 2011.

[ZL77] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression. IEEE

Transactions on Information Theory, 23(3), 1977.

79

Curriculum Vitae

Personal

Name Benedikt Driessen
Born 31.01.1983 in Hamburg, Germany

Education

09/2009–07/2013 Dr.-Ing. (PhD), Chair for Embedded Security, Ruhr-Universität Bochum
10/2002–09/2007 Dipl.-Ing. (MSc), IT-Security, Ruhr-Universität Bochum

Experience

09/2009–10/2013 Research Assistant, Chair for Embedded Security, Ruhr-Universität Bochum
10/2012–12/2012 Interim Engineering Intern, QUALCOMM Research, San Diego
10/2007–08/2009 Security Engineer, ESCRYPT GmbH, Bochum
01/2007–02/2007 Intern, Zynamics GmbH (now Google), Bochum
01/2006–05/2007 Student trainee, ESCRYPT GmbH, Bochum

80

List of Publications

Peer-reviewed Journal Papers

• Benedikt Driessen, Ralf Hund, Carsten Willems, Christof Paar, Thorsten Holz (Under minor revision).
An Experimental Security Analysis of Two Satphone Standards. ACM Transactions on Information and
System Security (TISSEC), 2013.

Peer-reviewed Conference Proceedings

• Benedikt Driessen, Markus Dürmuth. Achieving Anonymity Against Major Face Recognition Algorithms.
Conference on Communications and Multimedia Security (CMS), 2013. To appear.
• Daehyun Strobel, Benedikt Driessen, Timo Kasper, Gregor Leander, David Oswald, Falk Schellenberg,

Christof Paar. Fuming Acid and Cryptanalysis: Handy Tools for Overcoming a Digital Locking and Access

Control System. Advances in Cryptology (CRYPTO), 2013. To appear.
• Benedikt Driessen, Tim Güneysu, Elif Kavun, Oliver Mischke, Christof Paar, Thomas Pöppelmann.

IPSecco: A Lightweight and Reconfigurable IPSec Core. International Conference on ReConFigurable
Computing and FPGAs (ReConFig), 2012.
• Benedikt Driessen, Christof Paar. Solving Binary Linear Equation Systems over the Rationals and Bina-

ries. International Workshop on the Arithmetic of Finite Fields (WAIFI), 2012.
• Benedikt Driessen, Ralf Hund, Carsten Willems, Christof Paar, Thorsten Holz. Don’t Trust Satellite

Phones: A Security Analysis of Two Satphone Standards. IEEE Symposium on Security and Privacy
(Oakland), 2012.
• Benedikt Driessen, Axel Poschmann, Christof Paar. Comparison of Innovative Signature Algorithms for

WSNs. Conference on Wireless Network Security (WiSec), 2008.

Other Publications

• Benedikt Driessen, Christof Paar. Angriff auf Thuraya Satellitentelefonie. Datenschutz und Daten-
sicherheit 12/2012.

• Benedikt Driessen, Markus Dürmuth. Achieving Anonymity Against Major Face Recognition Algorithms.
Cryptology ePrint Archive, Report 2012/878.
• Benedikt Driessen. Eavesdropping on Satellite Telecommunication Systems. Cryptology ePrint Archive,

Report 2012/051.
• Christof Meyer, Juray Somorovsky, Jörg Schwenk, Benedikt Driessen, Thang Tran, Christian Wietfeld.

Sec2 – Ein mobiles Nutzer-kontrolliertes Sicherheitskonzept für Cloud-Storage. D-A-CH Security, 2011.
• Daniel Bussmeyer, Benedikt Driessen, André Osterhues, Jan Pelzl, Volker Reiss, Jörg Schwenk, Christof

Wegener. A Generic Architecture and Extension of eCryptfs: Secret Sharing Scheme, Smartcard Integra-

tion and a new Linux Security Module. Linux Kongress, 2009.

81

	Introduction
	Motivation
	Contribution and Organization
	Notation

	Solving Linear Equations with Analog Hardware
	Motivation
	Related Work
	A Circuit to Solve Linear Equations
	Transforming Matrices
	Converting Rational Solutions
	Discussion and Limitations of the Approach
	Matrices with Cycles
	Output Precision

	Security Analysis of the GMR-1 Standard
	Motivation
	Related Work
	Technical Background
	Network Layout
	Channels
	Encoding and Encryption

	Reverse Engineering
	The A5-GMR-1 Stream Cipher
	Structure
	Mode of Operation

	Cryptanalysis
	A Real-World Attack
	Recording TCH3 Data
	Parity-check Matrix
	Parameterization
	Implementation
	Results

	Discussion and Future Work
	Uplink Interception
	Real-time Decryption

	Security Analysis of the GMR-2 Standard
	Motivation
	Related Work
	Technical Background
	Satphone Hardware
	The Blackfin DSP
	Software and Operating System

	Reverse Engineering
	Obtaining the DSP Firmware
	Developing a Blackfin Disassembler
	Finding the Cipher

	The A5-GMR-2 Stream Cipher
	Structure
	Mode of Operation

	Cryptanalysis
	Discussion and Future Work

	Security Analysis of the SimonsVoss 3060 Locking System
	Motivation
	Related Work
	Technical Background
	Reverse Engineering
	The G2 Authentication System
	Keys & Protocol
	Cryptographic Primitives

	Cryptanalysis
	Differential Attack
	Active Attack
	Passive Attack

	Discussion and Future Work
	Comparison of Attacks
	Mitigations

	Conclusion

